
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Extracting Description Set Profiles from RDF Datasets using
Metadata Instances and SPARQL Queries

Tsunagu Honma

Graduate School of
Library, Information
and Media Studies,

University of
Tsukuba, Japan

tsuna@slis.tsukuba.
ac.jp

Kei Tanaka
NTT DATA

Corporation, Japan
telekyon.official@g

mail.com

Mitsuharu Nagamori
Faculty of Library,

Information and
Media Science,
University of

Tsukuba, Japan
nagamori@slis.tsuku

ba.ac.jp

Shigeo Sugimoto
Faculty of Library,

Information and
Media Science,
University of

Tsukuba, Japan
sugimoto@slis.tsu

kuba.ac.jp

Abstract
A variety of communities create and publish metadata as Linked Open Data (LOD). Users of
those datasets find and use them for their own purposes and may combine the datasets to add
value. Each LOD dataset uses various vocabularies, structures and constraints for describing
resources. In order to improve the usability of LOD datasets, it is very important for metadata
designers to enhance the interoperability of their own metadata with that of other datasets. In
order to create new interoperable metadata, metadata schema designers have to understand the
Application Profiles of the existing LOD datasets.
Dublin Core Description Set Profile (DSP) is a component of Dublin Core Application Profiles.
A DSP describes the structures and constraints of metadata in an application (e.g., resource
classes, properties cardinality and value scheme). Metadata schema registries, which collect and
provide metadata schemas, have a large potential for helping metadata schema designers find,
compare, and adopt existing schemas. However, most LOD datasets are not published with their
DSPs. As a result, metadata schema designers have to look at each dataset and guess the DSPs.
This paper proposes a method to extract the structural constraints of metadata records
automatically from metadata instances using existing metadata schema. The goal of this study is
to reduce the cost of metadata schema extraction and to increase the number of metadata schemas
registered in metadata schema registries. We have experimentally extracted constraints from
LOD datasets using SPARQL. To evaluate, we applied our approach to 10 datasets in the
DataHub. By comparing the structural constraints that were extracted using our approach with a
manual approach, we found that our approach was able to extract more constraints.
Keywords: application profiles; metadata schema design; metadata schema extraction

1. Introduction
A considerable number of metadata datasets are published as Linked Open Data (LOD)1 for

sharing on the Web. LOD is widespread across many specific domains such as government,
geography and e-science. Many communities create and publish LOD datasets on the Web and
users are free to combine those datasets. Before designing new LOD datasets, metadata schema
designers design a new application profile, which defines some constraints of metadata that are
important for users of datasets. Particularly, in order to mash-up different datasets, metadata
schema designers should create schema that enhance the interoperability of those metadata.

Application Profiles (Coyle and Baker, 2009) are helpful for users to understand the
constraints of datasets. Dublin Core Description Set Profile (DSP) (Nilsson, 2008) is a
component of an application profile, which explains the structural constraints of metadata

1 http://linkeddata.org/

109

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

instances (Nilsson and Baker, 2008). If metadata schema designers are able to find and use DSPs,
they can understand what vocabularies, structures, and constraints are used for describing datasets
in that specific domain.

There are some metadata schema registries for accumulating and publishing metadata
vocabularies and application profiles. Metadata schema designers can use those registries for
finding existing application profiles that are similar to their own application profile. In order to
cover a more specific domain, we have to increase the number of application profiles. However,
most LOD datasets are not published with their profiles (Nishide, et al,. 2013). Therefore,
metadata schema designers have to look into datasets and try to deduce their structural
constraints. There are a lot of datasets in each specific domain, and those datasets are often too
large to look into to determine structural constraints. It is therefore costly for metadata schema
designers to have to make deductions about structural constraints manually.

We propose a method to extract the structural constraints of LOD datasets automatically.
Creators of LOD datasets describe metadata instances based on their implicit or explicit structural
constraints. Therefore, we use metadata instances, which are included in LOD datasets and
existing metadata schema, for extracting structural constraints. We extract structural constraints
from LOD datasets using SPARQL. We create Description Templates for each class membership,
which resources are instances of. After creating Description Templates, we also extract property
URIs, value types, language tags and datatypes for creating Statement Templates.

We apply our approach in practice to 10 datasets in the DataHub for evaluating our approach
and clarifying issues which we need to solve for improving our method.

2. Sharing Application Profiles to Design a New Interoperable Schema
When metadata schema designers design a new application profile, they try to find existing

application profiles in order to 1) reduce the cost of designing application profiles, 2) improve the
interoperability of their metadata and 3) develop requirements for their metadata. Creating
application profiles from scratch comes at a high cost, because metadata schema designers have
to find suitable metadata vocabularies and structures for their purposes. If there are existing
application profiles which have been created for similar purposes, designers can reuse those
schema to reduce the cost of finding metadata vocabularies and deciding on the structure of
metadata. As a result, the new application profile has improved interoperability because schema
designers reuse common vocabularies and structures in the specific domain in which their
metadata is used. Through reusing and customizing existing application profiles, metadata
schema designers develop requirements for their metadata

In order to accomplish these goals, metadata schema designers should find and reuse existing
application profiles in the same domain. Metadata schema registries are useful for metadata
schema designers to find existing parts of application profiles. Metadata schema registries
support the sharing of metadata schema on the web and promote reuse of metadata schemas and
metadata interoperability (Nagamori et al., 2011). The Open Metadata Registry (Hillmann et al.,
2006) is one such metadata schema registry. This registry can store metadata vocabularies and
metadata schema in the form of element sets. MetaBridge (Nagamori et al., 2011) is also a
metadata schema registry which is compatible with OWL-DSP based on DSP. If metadata
creators share their application profile explicitly in those registries, metadata schema designers
can use those registries as examples of metadata structures and constraints when they design new
application profiles.

The number of application profiles that are registered in those registries is not enough for
metadata schema designers to find and reuse those profiles. Therefore, it is important to create
and register application profiles of various datasets. If metadata creators publish LOD datasets
with their application profiles, schema registries can accumulate and share those application
profiles. However, most LOD datasets are published without explicit application profiles. For that
reason, one has to look into each LOD dataset and create its application profile manually. LOD

110

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

datasets are often too large for observing as a whole, and observing those datasets and creating
application profiles are difficult for metadata schema designers. It is necessary to extract
application profiles from existing LOD datasets automatically.

There is related work in the area of schema extraction (Chidlovskii, 2002). Here, the
researchers proposed methods for extracting XML Schema. XML Schema defines the structural
constraints of metadata, which have been serialized in XML, such as the hierarchies of each
XML element and its attribute. However, we would like to extract the structural constraints of
resources, properties and values that are described with the RDF model, not only serialized with
XML. Such constraints are independent of the serialization found in XML elements hierarchies.
SchemEX (Konrath et al., 2012) is an existing approach for extracting metadata schema from
LOD datasets. This approach extract schema that includes RDF type clusters and relationships
between resources that are instances of type clusters. Those schema abstract structural constraints
about dataset with typed resources and properties, but not define metadata value constraints,
especially literal value constraints such as datatypes and language tags.

In this research, we propose a method to extract application profiles for LOD datasets
automatically using metadata instances and existing schema. In the Singapore Framework, an
application profile consists of five components. This research aims to extract Description Set
Templates, which define the structural constraints of metadata instances. Metadata instances are
described based on implicit or explicit structural constraints. We can extract those constraints
from existing metadata instances.

3. Extracting Structural Constraints from Metadata Instances
Definitions of metadata vocabularies, structural constraints of metadata and description

formats are all components of a metadata schema. In this research, our goal is to extract structural
constraints as a DSP when a user inputs metadata instances. A DSP consists of Description
Templates and Statement Templates. Description Templates define the constraints of resources,
and Statement Templates define the constraints of attributes. In DSP, we are able to describe the
following constraints using Description Templates and Statement Templates.
・	 Description Templates

- Resource class membership constraints
- Statement Templates which belongs to this Description Template

・	 Statement Templates
- Property URI
- Type constraint, “literal” or “non-literal”
- Class membership of non-literal metadata values
- Datatypes and language tags of literal metadata values

In this section, we explain our approach for extracting structural constraints with an example.

Figure 1 shows an example of metadata instances. The example shows that _:group1 is an
instance of foaf:Group ∩ foaf:Organization. This resource has two members using foaf:member,
_:person1 and _:person2 which have their own names and email addresses with foaf:name and
foaf:mbox. Our goal is extracting the structural constraints of these metadata instances as seen in
table 1 and table 2. Table 1 shows the constraints of resources which are instances of foaf:Group
∩ foaf:Organization. Table 2 shows the constraints of resources which are instances of
foaf:Person.

111

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

TABLE 1: Structural constraints of an instance of foaf:Group ∩ foaf:Organization

Attribute Property Value Constraints

name foaf:name rdfs:Literal, @en
website foaf:homepage foaf:Document
member foaf:member foaf:Person

TABLE 2: Structural constraints of an instance of foaf:Person

Attribute Property Value Constraints

name foaf:name rdfs:Literal, @en
email foaf:mbox rdfs:Resource

Metadata instances are described based on the above constraints, and we extract them from

metadata instances using the following steps. In each step, we extract resources, properties and
values using SPARQL because we need to estimate the structural constraints of metadata
instances. Before extracting the structural constraints, we loaded metadata instances in an RDF
database.

Step 1: Get the class membership which resources are instances of
Step 2: Get the properties for each class membership
Step 3: Get a value type constraint (literal or non-literal)
Step 4: Get other value constraints
Step 4-1: Get literal value constraints (e.g., language tag and datatype)
Step 4-2: Get non-literal value constraints (e.g., resource class membership and base URI)

In the first step, we extract class memberships of resources which are described using rdf:type
because typed resources are useful starting anchors for defining Description Templates. In our
example, there are two class memberships, foaf:Person and (foaf:Group ∩ foaf:Organization).
We extract those memberships using a SPARQL query, which is shown in Figure 2, and create
two Description Templates.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

_:person1 rdf:type foaf:Person;
 foaf:name "Alice"@en;
 foaf:mbox <mailto:alice@example.com>.

_:person2 rdf:type foaf:Person;
 foaf:name "Bob"@en;
 foaf:mbox <mailto:bob@example.com>.

_:group1 rdf:type foaf:Group, foaf:Organization;
 foaf:name "University of Tsukuba"@en;
 foaf:homepage <http://www.tsukuba.ac.jp/>;
 foaf:member _:person1, _:person2 .

FIG. 1. An example of metadata instances for extracting structural constraints of metadata

112

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

The second step is a process for creating Statement Templates. Statement Templates are

created for defining the constraints of metadata attributes. In this step, we execute queries to find
properties for each class membership, which are defined by Description Templates. When we
execute a SPARQL query, such as that shown in Figure 3, we get minimum Statement Templates
that define only property constraints.

We estimate value constraints in the third step. After we get metadata values using classes of

resources and a property, we classify those values into “literal”, “non-literal” and “mix”. To
estimate value constraints, we count the number of the three metadata values below.

A) The number of all metadata values,
B) The number of literal metadata values, and
C) The number of non-literal metadata values.

When A = B, we define value constraints as “literal”. If A > B and A > C, we define value
constraints as “mix”. For extracting B and C, we use isLiteral, isIRI and isBlank, which are
SPARQL functions that are shown in a SPARQL query in Figure 4.

SELECT DISTINCT ?p
WHERE {
 ?s ?p ?o .
 ?s rdf:type foaf:Group .
 ?s rdf:type foaf:Organization .
 FILTER NOT EXISTS {
 ?s rdf:type ?type .
 FILTER(?type != foaf:Group)
 FILTER(?type != foaf:Organization)
 }
}

SELECT DISTINCT (GROUP_CONCAT(DISTINCT(?type) ; separator = ", ") as ?types)
WHERE {
 ?s rdf:type ?type.
 ?s ?p ?o.
 FILTER(?p!=rdf:type)
}
GROUP BY ?s
ORDER BY ?type

FIG. 2. A SPARQL query for extracting the class membership which resources are instances of

FIG. 3. A SPARQL query for extracting properties which instances of foaf:Group ∩
foaf:Organization have

113

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

In the final step, we extract the constraints of literal and non-literal metadata values such as

class memberships of non-literal resources, base URIs, language tags and datatypes of literal
metadata values. This process is executed based on the result of step 3. If the metadata type value
is “non-literal”, we extract resource classes and the base URI of metadata values by analyzing all
objects data pulled back and load to the RDF database. When we found metadata with the value
“literal”, we defined datatype and language tags.

4. Evaluation
We implemented a system to extract DSPs using our approach. To evaluate our system and

approach, we extract DSPs from 10 datasets and verify those DSPs. We used 10 LOD datasets
that are published as RDF files on the DataHub2. It is difficult to extract metadata schema
manually, so to evaluate our method for large datasets, we chose datasets that could be accessed
on the Web and were the top 10 largest in file size at the time of access. In this evaluation, we
confirm only precision by comparing constraints which are extracted using our approach and a
manual method, and also comparing extracted constraints and actual datasets.

First, we compared structural constraints defined by DSPs, which were extracted by our
approach and a manual method. Using this comparison, we attempted to confirm if the system we
implemented is running correctly based on our proposed method. A person who executes a
manual method has knowledge and experience of designing metadata schema, but may not have
knowledge about the specific domain of each dataset (e.g., geography, statistics, etc.). In a
manual method, the process of extracting a DSP is based on 5 steps that were shown in section 3.
The difference of our approach and a manual method is the data size of RDF files. For extracting
a DSP from a dataset, our approach used entire RDF files belonging to that dataset, whereas the
manual method used the top 200 lines from each RDF file.

Table 3 shows the number of Description Templates and Statement Templates that were
extracted using our approach and a manual method. We confirmed that all of structural
constraints extracted manually were included in the structural constraints extracted by our
approach. The constraints that we compared are shown in section 3. We also confirmed the
constraints which were extracted by our approach are not contradictory to actual datasets. There
are, however, differences between numbers of templates that were extracted by our approach and
a manual method. One reason is because the amount of data that was used to manually extract
was smaller than our approach. Another reason is that some resources have multiple RDF types,

2 http://datahub.io/

SELECT (COUNT (?o) as ?count)
WHERE {
 ?s rdf:type foaf:Person .
 FILTER NOT EXISTS {
 ?s rdf:type ?type .
 FILTER(?type != foaf:Person)
 }
 {
 ?s foaf:mbox ?o .
 FILTER isBlank(?o)
 }
 UNION
 {
 ?s foaf:mbox ?o .
 FILTER isIRI(?o)
 }
}

FIG. 4. A SPARQL query for extracting the number of non-literal metadata values for
foaf:Person and foaf:mbox

114

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

and those class memberships are difference each other. For these cases, we created a Description
Template for each class membership, so that most Description Templates have only a few
resources. For example, we extracted 168 Description Templates from parole-simple-out, but 106
Description Templates have less than 10 resources. We discuss this problem in section 5.

 After we confirmed our system is running correctly, we checked constraints that were
extracted by our method but weren’t extracted by the manual method. As a result of comparing
those constraints and original datasets, those constraints were not contradictory to datasets.
Finally, we looked into parts of each dataset in order to find constraints which were not extracted
by our method.

In the above procedure, we confirmed that it is possible to extract most structural constraints,
which described in section 3, using our approach. However, there are constraints which we could
not extract using our approach. We discuss whether or not the constraints that we extracted are
useful to understand existing metadata structures in the next section.

5. Discussion
We could not extract structural constraints of resources which do not have rdf:type using our

approach. For example, nuts-geovocab, for describing geographical metadata, includes RDF
Collections in order to describe the exterior of geospatial objects with multiple coordinates.
Figure 5 shows metadata instances from nuts-geovocab. There are more than two coordinates for
describing the exterior of the resource “http://nuts.geovocab.org/id/AT111_geometry”. Those
coordinates are described using non-typed blank nodes which are connected with rdf:first and
rdf:rest. This meant that we could not extract the Description Templates for resources that
describe coordinates. When we guess the classes of each resource using existing metadata schema
and definitions about metadata vocabularies which include rdfs:domain or rdfs:range, we can
extract more Description Templates.

There are other issues that need to be solved in order to improve our approach. In this
evaluation, we could extract a large number of Description Profiles from farmers-markets-
geographic-data-united-states and parole-simple-out. We proceeded to check their Description
Templates and Statement Templates. As a result, in some cases, we could merge the Description
Templates into other templates. For example, farmers-markets-geographic-data-united-states,
there are the following two class memberships,

Table 3: The number of Description Templates and Statement Templates that were extracted by our approach
and a manual method

Dataset ID in the DataHub
Description Templates Statement Templates

our
approach

manual
method

our
approach

manual
method

nytimes 1 1 13 9
colinda 2 1 15 7
mondial 19 4 107 31
eurostat-rdf 9 2 75 8
linked-open-vocabularies-lov 9 4 63 15
farmers-markets-geographic-
data-united-states

33 4 164 18

msc 6 1 39 4
nuts-geovocab 4 3 15 11
osm-semantic-network 3 3 44 22
parole-simple-out 168 2 669 7

115

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Class membership defined in Description Template A
・	 http://logd.tw.rpi.edu/source/data-gov/vocab/Dataset (logd:Dataset)
・	 http://purl.org/twc/vocab/conversion/Dataset (conversion:Dataset)
・	 http://purl.org/twc/vocab/conversion/MetaDataset (conversion:MetaDataset)
・	 http://rdfs.org/ns/void#Dataset (void:Dataset)

Class membership defined in Description Template B
・	 http://logd.tw.rpi.edu/source/data-gov/vocab/Dataset (logd:Dataset)
・	 http://purl.org/twc/vocab/conversion/Dataset (conversion:Dataset)
・	 http://purl.org/twc/vocab/conversion/SameAsDataset (conversion:SameDataset)
・	 http://rdfs.org/ns/void#Dataset (void:Dataset)

Description Template A and B have differences in the two classes conversion:MetaDataset and

conversion:SameDataset. Both Description Templates have 8 Statement Templates, and those
Statement Templates are similar. If there are a large number of Description Templates, metadata
schema designers cannot easily understand the structural constraints of the dataset. In that case,
we should define one Description Template for resources which are instance of (logd:Dataset ∩
conversion:Dataset ∩ void:Dataset).

We believe that we are unable to extract DSPs correctly if there are resources that have
multiple roles in the datasets. We have created and published Aozora Bunko LOD3 which is a
dataset including bibliographies based on Aozora Bunko4. Aozora Bunko is a Japanese digital
library that publishes digitized books. The bibliographies, which are published on Aozora Bunko,
have some resources about persons, such as “creator”, “translator” and “reviser”. We described
person as a instance of aozora:Person. However, instances of aozora:Person have different roles
in that dataset as mentioned above. In that case, we can only extract one Description Template
about aozora:Person, and in the Description Template, the metadata attributes for the persons
with different roles are mixed. There are two approaches to resolve this problem. One is by

3 http://mdlab.slis.tsukuba.ac.jp/lodc2012/aozoralod/
4 http://www.aozora.gr.jp/

<geometry:Polygon
 xmlns:geometry="http://geovocab.org/geometry#"
 xmlns:wgs84pos=” http://www.w3.org/2003/01/geo/wgs84_pos#”
 rdf:about="http://nuts.geovocab.org/id/AT111_geometry">
 <geometry:exterior>
 <geometry:LinearRing>
 <geometry:posList>
 <rdf:Description>
 <rdf:first>
 <rdf:Description>
 <wgs84pos:lat>47.35300025</wgs84:lat>
 <wgs84pos:long>16.435400050000055</wgs84:long>
 </rdf:Description>
 </rdf:first>
 <rdf:rest>
 <rdf:Description>
 <rdf:first>
 <rdf:Description>
 <wgs84:lat>47.455132750000018</wgs84:lat>
 <wgs84:long>16.281081050000068</ns48:long>
…

FIG. 5. An example of resource which are described using non-typed resources

116

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

adding different classes for each type of person in the original datasets. Because it is required to
change source data, this approach is not practical. The other is extracting a Description Template
for each pair of a class membership and a property that has an instance of that class membership
as a range. For example, if there are metadata instances which figure 6 shows, we should extract
two Description Templates for aozora:Person as dc:creator and aozora:Person as dc:translator.

6. Conclusion
In this paper, we have proposed a method for extracting the structural constraints of LOD

datasets using metadata instances and existing schema. Metadata schema about existing datasets
are important for metadata schema designers to create a new interoperable schema with a low
cost. However, because creating formal metadata schema is costly, there are few schema about
existing LOD datasets on the web. We aim to extract metadata schema automatically, especially
the structural constraints of metadata records, in order to add metadata schema to metadata
schema registries.

To evaluate our approach, we compared the number of structural constraints which were
extracted by our approach and manually with 10 datasets in the DataHub. That evaluation showed
that our approach could extract all the structural constraints which could be extracted manually.
We also compared metadata instances and structural constraints which are extracted using our
approach. As a result, it has become clear that there are three issues to be solved when extracting
structural constraints using our approach. One is the need to improve our method for extracting
Description Templates of resources which have no rdf:type. The second issue is that we need to
merge Description Templates when the extracted templates are similar to other templates. The
last issue is that we separate templates for resources, which have same classes, but have different
roles in a dataset.

References
Chidlovskii. Boris (2002). Schema extraction from XML collections. Proceedings of the 2nd ACM/IEEE-CS joint

conference of Digital libraries, 2002, 291-292.
Coyle, Karen and Thomas Baker. (2009). Guidelines for Dublin Core Application Profiles. Retrieved May 15, 2014,

from http://dublincore.org/documents/2009/05/18/profile-guidelines/ .
Hillmann, I. Diane I, Stuart A. Sutton, Jon Phipps and Ryan Laundry. (2006). A Metadata registry from vocabularies

up: The NSDL registry project. Proceedings of the International Conference on Dublin Core and Metadata
Applications, 2006.

Konrath, Mathias, Thomas Gottron, Steffen Staab and Ansgar Scherp. (2012). SchemEX – Efficient Construction of a
Data Catalogue by Stream-based Indexing of Linked Data. Journal of Web Semantics, 2012, vol. 16.

Nagamori, Mitsuharu, Masahide Kanzaki, Naohisa Torigoshi and Shigeo Sugimoto. (2011). Meta-Bridge: A
Development of Metadata Information Infrastructure in Japan. Proceedings of the International Conference on
Dublin Core and Metadata Applications, 2011, 63-68.

Nilsson, Mikael. (2008). Description Set Profiles: A constraint language for Dublin Core Application Profiles. Retrieve
May 15, 2014, from http://dublincore.org/documents/dc-dsp/ .

Nilsson, Mikael, Thomas Baker and Pete Johnston. (2008). The Singapore Framework form Dublin Core Application
Profiles. Retrieve May 15, 2014, from http://dublincore.org/documents/2008/01/14/singapore-framework/ .

<book_A> dc:creator <person_X> ;
 dc:translator <person_Y> .

<person_X> rdf:type aozora:Person .
<person_Y> rdf:type aozora:Person .

FIG. 6. An examples of resources which are both instance of aozora:Person, and have different roles
“dc:creator” and “dc:translator”

117

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Nishide, Yoritsugu, Tsunagu Honma and Mitsuharu Nagamori. (2013). An Investigation of Japanese Open Data
Schema and Links to Improve the Use of Datasets. Digital Library, 2014.

118

