Ontology-Enabled Metadata Schema Generator: The Design Approach

Jian Qin School Of Information Studies Syracuse University Syracuse, NY Xiaozhong Liu Miao Chen School of Informatics and Computing Indiana University Bloomington, IN

An infrastructure perspective for metadata

- Portable
- Customizable
- Extendable
- Reusable
- Easy to use

Portability is the key

Building blocks of

Metadata generation output

Metadata for data citation

Metadata for data discovery

Metadata for data archiving

Metadata for data quality

Metadata for data provenance

Metadata for data management

What types of building blocks are there for a metadata infrastructure?

Metadata standards: an transition from one-covers-all to portable modules

Metadata standards

Metadata standards

Metadata standards

Metadata standards

"Ontologize"

Decompose Reshuffle Restructure Normalize Semantic building blocks

Rule building blocks

Envisioning the metadata infrastructure: ontology-enabled metadata schema generator

Ontology Backend Interface ontologies Sci-Onto ORCID 🖃 🔻 Person Metadata ---- B ID schema FOAF ---- 🖺 Name Drag and Select generator VIVO □ Dataset 🖺 ID --- 🖺 Name Dublin --- 🖺 Date Core Status Geographic output 🗖 🦁 Geospatial metadata --- Bounding coordinates standards ---- Place **★** Temporal Context ⊢ Context Schema in format ····· 🖺 Assessment metadata ···· 🖺 Bio-material elements **Others** XMI **RDF** ± ⊞ Human

..... 🖺 Measurement

Envisioning the metadata infrastructure: ontology-enabled metadata generator

Ontology Backend Interface ontologies Sci-Onto ORCID 🖃 🔻 Person Metadata ---- B ID FOAF ---- 🖺 Name Preload generator entity data VIVO □ Dataset 🖺 ID --- 🖺 Name Dublin --- 🖺 Date Core Status Geographic output 🖃 🦁 Geospatial metadata --- Bounding coordinates standards ---- Place **★** Temporal Context — Context Metadata in format metadata ····· 🖺 Assessment ···· 🖺 Bio-material elements

± ⊞ Human

..... 🖺 Measurement

XMI

RDF

Others

Questions to be addressed

Ontologies

- What ontologies?
- Who will create them and how can community consensus be reached about them?
- How big/small should ontologies be to best meet the schema generation and metadata generation needs?

Rules

- How will the assembling of schemas be regulated?
- Who will determine what rules for schema generation?

Plan for a test

Start from a small scale experiment

- Leveraging existing semantic and technical resources
- Utilizing the findings from our survey to metadata standards for scientific data for ontology development
- Prototyping the metadata schema generator
- Evaluate the result and scale up

Comments?

Thank you!