Ontology-Enabled Metadata Schema Generator: The Design Approach

Jian Qin
School Of Information Studies
Syracuse University
Syracuse, NY

Xiaozhong Liu
School of Informatics and Computing
Indiana University
Bloomington, IN

Miao Chen
An infrastructure perspective for metadata

- Portable
- Customizable
- Extendable
- Reusable
- Easy to use
Portability is the key

Building blocks of metadata

Metadata generation output
- Metadata for data citation
- Metadata for data discovery
- Metadata for data archiving
- Metadata for data quality
- Metadata for data provenance
- Metadata for data management
What types of building blocks are there for a metadata infrastructure?

Semantic block
- Ontologies for entity classes
- Ontologies for geospatial classes
- Ontologies for temporal classes
- Subject categories
- Taxonomies
- Ontologies for measurements
- Controlled terms in domains
- Identity repositories
- More …

Tool block
- Metadata schema generator
- Metadata statement editor
- More …

Rule block
- Relationship rules
- Coordination rules
- Best practices and guidelines
Metadata standards: an transition from one-covers-all to portable modules

“Ontologize”
- Decompose
- Reshuffle
- Restructure
- Normalize

Semantic building blocks

Rule building blocks
Envisioning the metadata infrastructure: ontology-enabled metadata schema generator

Backend ontologies:
- ORCID
- FOAF
- VIVO

Geographic metadata standards:
- Dublin Core
- Geographic metadata standards
- Context metadata elements

Ontology Interface:
- Sci-Onto
- Person
- ID
- Name
- Organization
- Dataset
- ID
- Name
- Date
- Status
- Geospatial
- Bounding coordinates
- Place
- Temporal
- Context
- Assessment
- Bio-material
- Human
- Measurement

Metadata schema generator:
- Drag and Select

Output:
- Schema in format
 - XML
 - RDF
 - Others
 - ?
Envisioning the metadata infrastructure: ontology-enabled metadata generator

Backend ontologies
- ORCID
- FOAF
- VIVO
- Dublin Core
- Geographic metadata standards
- Context metadata elements

Ontology Interface
- Sci-Onto
 - Person
 - ID
 - Name
 - Organization
 - Dataset
 - ID
 - Name
 - Date
 - Status
 - Geospatial
 - Bounding coordinates
 - Place
 - Temporal
 - Context
 - Assessment
 - Bio-material
 - Human
 - Measurement

Metadata generator
- Preload entity data
- Output
- Metadata in format
 - XML
 - RDF
 - Others?

Metadata in format
Questions to be addressed

Ontologies

• What ontologies?
• Who will create them and how can community consensus be reached about them?
• How big/small should ontologies be to best meet the schema generation and metadata generation needs?

Rules

• How will the assembling of schemas be regulated?
• Who will determine what rules for schema generation?
Plan for a test

Start from a small scale experiment

• Leveraging existing semantic and technical resources
• Utilizing the findings from our survey to metadata standards for scientific data for ontology development
• Prototyping the metadata schema generator
• Evaluate the result and scale up
Comments?

Thank you!