Making Vendor-Generated Metadata Work for Archival Collections Using VRA and Python

Carolyn Hansen, Metadata Librarian, University of Cincinnati
Sean Crowe, Electronic Resources Librarian, University of Cincinnati

Introduction
Cataloging cultural resources typically requires more descriptive granularity than standard library materials.

Stemming from a project to convert metadata from Dublin Core to VRA, the University of Cincinnati Libraries outlines a successful workflow to improve vendor-generated metadata for a large digital collection of archival materials.

Collection

Content
- Ca. 9,000 digitized images from an extensive archive of the City Engineer of the City of Cincinnati
- Mostly photographic prints and negatives

Subjects
- Unfinished Cincinnati Subway System
- Early 20th century transportation
- Urban history
- Social history

Metadata & Access

Dublin Core (DC) metadata created by vendor during scanning process; limited library control over metadata mapping and workflow

Prior to project, metadata records and digital objects were accessible on UC’s Digital Resource Commons (DRC); not available on UC’s LUNA image repository, where most UC photographic collections are stored with VRA metadata.

Challenges

Conversion from Dublin Core to more granular VRA requires thoughtful mapping of data fields and adding additional fields, e.g. VRA describes original object AND digital surrogate. Project involved extensive use of Getty Research Institute’s Art & Architecture Thesaurus (AAT) for descriptive vocabulary to fill in gaps in description.

Planning and specification for the contract-scanning project did not include input from Library Technical Services, the vendor-generated metadata has issues with accuracy and consistency.

Conversion Project

Convert vendor-generated metadata in DC to VRA, for inclusion in UC’s LUNA repository. Records stored in CSV files.

Workflow

1. Research initial vendor metadata creation.
2. Create metadata map from DC to VRA; used as a reference document for the change script.
3. Use Getty Vocabularies to specify describe original physical object and digital surrogate.
4. Develop Python script to parse CSV and execute changes to metadata.
5. Batch process changes to descriptive metadata and load into LUNA repository.

Conclusion

Since the collection was posted in Fall 2013, it has received over 17,000 unique page-views in the Luna Repository. This project serves as a template for future shared, interdepartmental projects. Further collaboration is certain as traditional Library Technical Services operations evolve to support local and unique digital content, including research data, archival material, and beyond.

References


Acknowledgements

Linda Newman, Head, University of Cincinnati Libraries Digital Content & Repositories Dept
Elna Saxton, Head, University of Cincinnati Libraries Content Services Division
Leslie Schick, Associate Dean of Library Services, Director Health Sciences Library

University of Cincinnati Libraries
www.libraries.uc.edu

Acknowledgements

Linda Newman, Head, University of Cincinnati Libraries Digital Content & Repositories Dept
Elna Saxton, Head, University of Cincinnati Libraries Content Services Division
Leslie Schick, Associate Dean of Library Services, Director Health Sciences Library