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Abstract 

In the context of the DCMI RDF Application Profile task group and the W3C Data Shapes 
Working Group solutions for the proper formulation of constraints and validation of RDF data on 
these constraints are being developed. Several approaches and constraint languages exist but there 
is no clear favorite and none of the languages is able to meet all requirements raised by data 
practitioners. To support the work, a comprehensive, community-driven database has been 
created where case studies, use cases, requirements and solutions are collected. Based on this 
database, we have hitherto published 81 types of constraints that are required by various 
stakeholders for data applications. We are using this collection of constraint types to gain a better 
understanding of the expressiveness of existing solutions and gaps that still need to be filled. 
Regarding the implementation of constraint languages, we have already proposed to use high-
level languages to describe the constraints, but map them to SPARQL queries in order to execute 
the actual validation; we have demonstrated this approach for the Web Ontology Language in its 
current version 2 and Description Set Profiles. In this paper, we generalize from the experience of 
implementing OWL 2 and DSP by introducing an abstraction layer that is able to describe 
constraints of any constraint type in a way that mappings from high-level constraint languages to 
this intermediate representation can be created more or less straight-forwardly. We demonstrate 
that using another layer on top of SPARQL helps to implement validation consistently accross 
constraint languages, simplifies the actual implementation of new languages, and supports the 
transformation of semantically equivalent constraints across constraint languages. 
Keywords: RDF validation; RDF constraints; RDF constraint types, RDF validation 
requirements; Linked Data; Semantic Web 

1.  Introduction 
The proper validation of RDF data according to constraints is a common requirement of data 

practitioners. Among the reasons for the success of XML is the possibility to formulate fine-
grained constraints to be met by the data and to validate the data according to these constraints 
using powerful systems like DTD, XML Schema, RELAX NG, or Schematron.  

In 2013, the W3C organized the RDF Validation Workshop1 where experts from industry, 
government, and academia discussed first RDF validation use cases. In 2014, two working groups 
on RDF validation were established: the W3C RDF Data Shapes Working Group2 and the DCMI 
RDF Application Profiles Task Group.3 We collected the findings of these working groups and 
initiated a database of RDF validation requirements4 with the intention to collaboratively collect 
case studies, use cases, requirements, and solutions in a comprehensive and structured way 
(Bosch & Eckert, 2014a). Based on our work in the DCMI and in cooperation with the W3C 

                                                        
1 http://www.w3.org/2012/12/rdf-val/ 
2 http://www.w3.org/2014/rds/charter 
3 http://wiki.dublincore.org/index.php/RDF-Application-Profiles 
4 Online available at: http://purl.org/net/rdf-validation 
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working group, we identified by today 81 constraint types, where each type corresponds to a 
specific requirement in the database. In a technical report, we explain each constraint type in 
detail and give examples for each represented by different constraint languages (Bosch, Nolle, 
Acar, & Eckert, 2015). 

Various constraint languages exist or are being developed that support more or less of these 
constraint types. For our work, we focus on the following four as the ones that are most popular 
among data practitioners, often mentioned on mailing lists and/or being candidates or prototypes 
for the upcoming W3C recommendation: Description Set Profiles (DSP),5 Resource Shapes 
(ReSh),6 Shape Expressions (ShEx),7 and the Web Ontology Language (OWL).8 Despite the fact 
that OWL is arguably not a constraint language, it is widely used in practice as such under the 
closed-world and unique name assumptions. 

With its direct support of validation via SPARQL, the SPARQL Inferencing Notation (SPIN)9 
is also very popular to formulate and check constraints (Fürber & Hepp, 2010). We consider 
SPIN as a low-level language in contrast to the other constraint languages where specific 
language constructs exist to define constraints in a declarative and in comparison more intuitive 
way – although SPARQL aficionados might object particularly to the latter point. 

The power of SPIN is shown in Table 1, where we list the fraction (and absolute numbers in 
brackets) of how many constraint types each of these languages supports (Bosch et al., 2015). We 
further see that OWL 2 is currently the most expressive high-level constraint language, at least 
according to the pure number of constraint types supported. This does not preclude that other 
constraint languages are better suited for certain applications, either because they support some 
types that are not supported by OWL or because the constraint representation is more appealing 
to the data practitioners – producers as well as consumers who again might have different needs 
and preferences. 

TABLE 1: Constraint Type Specific Expressivity of Constraint Languages 
 

DSP ReSh ShEx OWL 2 SPIN 
17.3 (14) 25.9 (21) 29.6 (24) 67.9 (55) 100.0 (81) 

 
We formerly demonstrated that a high-level constraint language like OWL 2 and DSP can be 

implemented by mapping the language to SPIN using SPARQL CONSTRUCT queries (Bosch & 
Eckert, 2014b). We provide a validation environment where own mappings from arbitrary 
constraint languages can be provided and tested.10 The only limitations are that the constraints 
have to be expressed in RDF and that the constraint language is expressible in SPARQL. 

The constraint type minimum qualified cardinality restrictions which corresponds to the 
requirement R-7511 can be instantiated to formulate the constraint that publications must have at 
least one author which must be a person. This constraint can be expressed as follows using 
different constraint languages: 

                                                        
5 http://dublincore.org/documents/2008/03/31/dc-dsp/ 
6 http://www.w3.org/Submission/2014/SUBM-shapes-20140211/ 
7 http://www.w3.org/Submission/2014/SUBM-shex-primer-20140602/ 
8 http://www.w3.org/TR/owl2-syntax/ 
9 http://spinrdf.org/ 
10 Online available at: http://purl.org/net/rdfval-demo, source code online available at: 
https://github.com/boschthomas/rdf-validator. 
11 Requirements are identified in the database by an R and a number, additionally an alphanumeric 
identifier is provided, in this case R-75-MINIMUM-QUALIFIED-CARDINALITY-ON-PROPERTIES. 
Online at: http://lelystad.informatik.uni-mannheim.de/rdf-validation/?q=node/82 
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Note that the SPIN representation of the constraint is not a SPIN mapping to implement the 
constraint, but a direct expression of the constraint using a SPARQL CONSTRUCT query that 
creates a spin:ConstraintViolation if the constraint is violated.  

It can be seen that the higher-level constraint languages are comparatively similar, there seems 
to be a pattern, a common way to express this type of constraint. Therefore, a mapping from a 
high-level language to another high-level language would be considerably easier. Unfortunately, 
there is not (yet) a high-level language that supports all constraint types.  

The creation of mappings of constraint languages to SPIN to implement their validation is in 
many cases not straight-forward and requires profound knowledge of SPARQL, as the following 
example demonstrates. In this example, the validation of the minimum qualified cardinality 
restrictions constraint type is implemented for DSP:  

The SPIN mappings for OWL 2 and DSP are rather complicated and can be found in 

OWL 2: Publication a owl:Restriction ; 
          owl:minQualifiedCardinality 1 ; 
          owl:onProperty author ; 
          owl:onClass Person . 
   
ShEx: Publication { author @Person{1, } } 
 
ReSh: Publication a rs:ResourceShape ; rs:property [ 
          rs:propertyDefinition author ; 
          rs:valueShape Person ; 
          rs:occurs rs:One-or-many ; ] . 
   
DSP: [ dsp:resourceClass Publication ; dsp:statementTemplate [  
          dsp:minOccur 1 ;  
          dsp:property author ;  
          dsp:nonLiteralConstraint [ dsp:valueClass Person ] ] ] . 
      
SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {  
          ?this  
              a ?C1 ; 
              ?p ?o . 
          BIND ( qualifiedCardinality( ?this, ?p, ?C2 ) AS ?c ) . 
          BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) . 
          FILTER ( ?cardinality < 1 ) .  
          FILTER ( ?C1 = Publication ) . 
          FILTER ( ?C2 = Person ) . 
          FILTER ( ?p = author ) . } 
       
SPIN function qualifiedCardinality:        
SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?o . ?o a ?arg3 . } 

CONSTRUCT { 
    _:constraintViolation  
        a spin:ConstraintViolation ; 
        rdfs:label ?violationMessage ; 
        spin:violationRoot ?this ; 
        spin:violationPath ?property ; 
        spin:violationSource ?violationSource . } 
WHERE {  
    ?this a ?resourceClass . 
    ?descriptionTemplate  
        dsp:resourceClass ?resourceClass ; 
        dsp:statementTemplate ?statementTemplate . 
    ?statementTemplate  
        dsp:minOccur ?minimum ; 
        dsp:property ?property ; 
        dsp:nonLiteralConstraint ?nonLiteralConstraint . 
    ?nonLiteralConstraint dsp:valueClass ?valueClass .  
    BIND ( qualifiedCardinality( ?this, ?property, ?valueClass ) AS ?cardinality ) . 
    FILTER ( ?cardinality < ?minimum ) . } 
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the mappings provided by us.12 
In this paper, we build on the experience gained from mapping several constraint languages to 

SPIN and from the analysis of the identified constraint types to create an intermediate layer, a 
framework that is able to describe the mechanics of all constraint types and that can be used to 
map high-level languages more easily. 

2.  Motivation 
Even with an upcoming W3C recommendation, it can be expected that several constraint 

languages will be used in practice in future – consider the situation in the XML world, where a 
standardized schema language was available from the beginning and yet additional ways to 
formulate and check constraints have been created. Therefore, semantically equivalent constraints 
represented in different languages will exist. This raises two questions: 
1. How can we ensure that two semantically equivalent constraints are actually validated 
      consistently? 
2. How can we support the transformation of semantically equivalent constraints from 
       one constraint language to another? 
 
Consistent implementation. Even though SPIN provides a convenient way to represent 
constraints and to validate data according to these constraints, the implementation of a high-level 
constraint language still requires a tedious mapping to SPIN with a certain degree of freedom as 
to how a constraint violation is actually represented and how exactly the violation of the 
constraint is checked. Our framework therefore provides a common ground that is solely based on 
the abstract definitions of the constraint types, as identified in our database. By providing a SPIN 
mapping for each constraint type,13 it is ensured that the details of the SPIN implementation are 
consistent irrespective of the constraint language and that the validation leads always to exactly 
the same results. 
 
Constraint transformation. Consistent implementations of constraint languages provide some 
advantage, but it could be argued that they are not important enough to justify the additional 
layer. The situation, however, is different when transformations from one constraint language to 
another are desired, i.e., to transform a specific constraint scα of any constraint type expressed by 
language α into a semantically equivalent specific constraint scβ of the same constraint type 
represented by any other language β. By defining mappings between equivalent specific 
constraints and the corresponding generic constraint (gc) we are able to convert them 
automatically: 
 

gc = mα (scα ) 
scβ = m´β (gc) 

 
Thereby, we do not need to define mappings for each constraint type and each possible 

combination of constraint languages. Assuming that we are able to express a single constraint 
type like minimum qualified cardinality restrictions within 10 languages, n·n−1 = 90 mappings 
would be needed – as mappings generally are not invertible. With an intermediate generic 

                                                        
12 OWL 2 mapping online available at: https://github.com/boschthomas/rdf-

validation/blob/b6a275fb5d71a92ae33d3b6aadd5f447351214b7/SPIN/OWL2_SPIN-Mapping.ttl; DSP 
mapping online available at: https://github.com/boschthomas/rdf-
validation/blob/b6a275fb5d71a92ae33d3b6aadd5f447351214b7/SPIN/DSP_SPIN-Mapping.ttl#L4665 
13 RDF-CV to SPIN online available at: https://github.com/boschthomas/RDF-CV-2-SPIN 
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representation of constraints, on the other side, we only need to define for each constraint type 2n 
= 20 mappings – where 10 mappings should already exist if we have an implementation in our 
framework. To summarize, if language developers are willing to provide two mappings – forward 
(m) and backward (m´) – to our framework for each supported constraint type, we not only would 
get the consistent implementation of all languages, it would also be possible to transform 
semantically equivalent constraints into all constraint languages. 

3.  Towards a Framework 
When we fully implemented OWL 2 and DSP and to some extend other constraint languages 

using SPARQL as intermediate language (Bosch & Eckert, 2014b), we found that many 
mappings actually resemble each other; particularly the mappings of the same constraint type in 
different languages, but also the mappings of different constraint types, though the latter only on 
a very superficial, structural level. The basic idea of our framework is very simple: we aim at 
reducing the representation of constraints to the absolute minimum that has to be provided in a 
mapping to SPIN to implement the validation for constraint types. Consider again our example 

from above for the SPIN representation of a constraint of the type minimum qualified cardinality 
restrictions: 

However this SPIN code looks like, all we have to provide to make it work is the desired 
minimum cardinality (?cardinality), the property to be constrained (?p), the class whose 
individuals must hold for the constraint (?C1), and the class for which the property should be 

constrained (?C2). All other variables are bound internally. So we could reduce the effort of the 
mapping by simply providing these four values, which are readily available in all representations 
of this constraint type: 

In further investigation of all kind of constraints and particularly the list of constraint types, we 
aimed at identifying the building blocks of such constraints to come up with a concise 
representation of every constraint type. 

SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {  
          ?this  
              a ?C1 ; 
              ?p ?o . 
          BIND ( qualifiedCardinality( ?this, ?p, ?C2 ) AS ?c ) . 
          BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) . 
          FILTER ( ?cardinality < 1 ) .  
          FILTER ( ?C1 = Publication ) . 
          FILTER ( ?C2 = Person ) . 
          FILTER ( ?p = author ) . } 
       
SPIN function qualifiedCardinality:       
SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?o . ?o a ?arg3 . } 

OWL 2: Publication a owl:Restriction ; 
          owl:minQualifiedCardinality 1 ; 
          owl:onProperty author ; 
          owl:onClass Person . 
   
ShEx: Publication { author @Person{1, } } 
 
ReSh: Publication a rs:ResourceShape ; rs:property [ 
          rs:propertyDefinition author ; 
          rs:valueShape Person ; 
          rs:occurs rs:One-or-many ; ] . 
   
DSP: [ dsp:resourceClass Publication ; dsp:statementTemplate [  
          dsp:minOccur 1 ;  
          dsp:property author ;  
          dsp:nonLiteralConstraint [ dsp:valueClass Person ] ] ] . 
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3.1.  Building Blocks 
At the core, we use a very simple conceptual model for constraints (see Figure 1), using a 

small lightweight vocabulary called RDF Constraints Vocabulary (RDF-CV). 14 
 

 
 

FIG. 1.  RDF Constraints Vocabulary (RDF-CV) Conceptual Model 

 
RDF constraints are either simple constraints or complex constraints. Simple constraints 

denotes the set of atomic constraints with respect to a single constraining element – we will come 
to the notion of a constraining element in a second. In contrast, there are complex constraints, i.e., 
the set of constraints which are created out of simple and/or other complex constraints. This 
structure therefore allows to build complex constraints out of other (simple or complex) 
constraints. Regarding our database of constraint types, 60% of the constraint types are used to 
instantiate simple constraints and 26% complex constraints. Constraints of additional 14% of the 
constraint types are complex constraints as well which can be simplified and therefore formulated 
as simple constraints if additional constraining elements are introduced to cover them. 

The properties describing a simple constraint are very structural, i.e., the properties describe 
the structure of constraints. The central property is the constraining element which refers to one 
of 103 constraining elements described in our technical report (Bosch et al., 2015). Constraining 
elements are for example taken from Description Logics, another concrete example would be the 
SPARQL function REGEX where a regular expression is checked against some property value. 
In most cases, constraining elements directly correspond to a constraint type, sometimes (as for 
REGEX) they are shared by several constraint types. Complex constraints again need several 
constraining elements to be expressed. 

Irrespective of and additional to the constraining element, there are properties to describe the 
actual constraint, they can also be seen as parameters for the constraining element. The context 
class limits the constraint to individuals of a specific class. Depending on the constraining 
elements, a list of classes can be provided, for example to determine the valid classes for a value 
or to define a class intersection to be used in a constraint. leftProperties and rightProperties are 
lists usually containing properties the constraint is applied to. A typical example for a constraint 
type with a right hand side list of properties would be literal value comparison (R-43), where 
constraints like birthDate < deathDate can be expressed. Finally, the constraining value contains 
a literal value to be checked against; for instance in the case of the REGEX element, it contains 
the regular expression to be evaluated. 

This simple structure plus the constraining elements form the building blocks of our proposed 
framework. In the technical report (Bosch et al., 2015), we list for every constraint type its 
representation in our framework which not only shows that constraints of any constraint type can 

                                                        
14 Formal specification and HTML documentation online available at: 
https://github.com/boschthomas/RDF-Constraints-Vocabulary 
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indeed be described generically in this way, but which also forms the starting point for any 
mappings using this framework. 

Formal approach and semantics. A cornerstone of the framework is the generic 
representation of a constraint, which can often be done using Description Logics. For example the 
minimum qualified cardinality restriction can be expressed as Publication ⊑ ≥1 author.Person. 
This way, the knowledge representation formalism Description Logics (DL) (Krötzsch, Simancík, 
& Horrocks, 2012; Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003; Baader & 
Nutt, 2003) with its well-studied theoretical properties provides the foundational basis for the 
framework. 

It turned out that 64% of the 81 constraint types are actually expressible in DL. Only for the 
remaining 36%, other means, i.e., other constraining elements, had to be identified. This is not 
surprising if we consider that OWL is based on DL. When we talk about using DL to represent 
constraints, we have to establish once more that the semantics of OWL and DL differ from the 
semantics of constraint languages regarding the open world assumption (OWA) and the non-
unique name assumption (nUNA). Both are usually assumed when dealing with OWL or DL, 
whereas validation usually assumes a closed world (CWA) and unique naming (UNA), i.e., if a 
desired property is missing, this leads to a violation and if two resources are named differently, 
they are assumed to be different resources. 

We won’t get into details about these assumptions here, but it has to be noted that the applied 
semantics have to be defined if validation is performed, as the results would differ under different 
semantics. Precisely, we found that for 56.8% of the constraint types validation results differ if 
the CWA or the OWA is assumed and for 66.6% of the constraint types validation results are 
different in case the UNA or the nUNA is assumed (Bosch et al., 2015). 

For the purpose of a consistent implementation and transformation of constraints, constraints 
are considered semantically equivalent if they detect the same set of violations regardless of RDF 
data, which means whenever the constraints are applied to any RDF data they point out the same 
violations. 

3.2.  Simple Constraints 
In this and the following section, we provide examples for the representation of constraint 

types within the framework. 
The minimum qualified cardinality restriction (R-75) Publication ⊑ ≥1 author.Person, which 

restricts publications to have at least one author which must be a person, is an example of a 
simple constraint on author which holds for all individuals of the class Publication. Table 2 
displays how the simple constraint is generically represented using the RDF-CV. 

 
TABLE 2: Minimum Qualified Cardinality Restriction as Property Constraint 

 
context class left property 

list 
right p. list classes constraining 

element 
c. value 

Publication author - Person ≥ 1 

 
The constraining element is an intuitive term which indicates the actual type of constraint. For 

the majority of the constraint types, there is exactly one constraining element, for instance 
property domain (R-25, R-26) restricts domains of properties and there is only one constraining 
element with exactly the same identifier property domain. Some constraint types, however, need 
several constraining elements to be expressed, for instance language tag cardinality (R-48, R-49) 
is used to restrict data properties to have a minimum, maximum, or exact number of relationships 
to literals with selected language tags. Thus, three constraining elements are needed to express 
each possible constraint of that constraint type. This example also illustrates that the granularity 
of the constraint types varies and certainly often is debatable. Keep in mind that they correspond 
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to requirements as identified by the working groups. The constraining elements, as in this 
example, are closer to atomic elements of constraints. 

If constraint types are expressible in DL, associated constraining elements are formally based 
on DL constructs like concept and role constructors (⊑, ≡, ⊓, ⊔, ¬, ∃, ∀, ≥, ≤), equality (=), and 
inequality (≠). In case constraint types cannot be expressed in DL such as data property facets (R-
46) or literal pattern matching (R-44), we reuse widely known terms from SPARQL (e.g., 
REGEX) or XML Schema constraining facets (e.g., xsd:minInclusive) as constraining elements. 
We provide a complete list of all 103 constraining elements which can be used to express 
constraints of any constraint type (Bosch et al., 2015). 

Additional to the constraining element, there are properties of simple constraints which can be 
seen as parameters for the constraining element. In some cases, a simple constraint is only 
complete when a constraining value is stated in conjunction with the constraining element. 
Depending on the constraining element, a list of classes can be provided, for example to 
determine the valid classes for a value. The constraining element of the constraint Publication ⊑ 
≥1 author.Person, e.g., is ≥, the constraining value is 1, and the list of classes includes the class 
Person which restricts the objects of the property author to be persons. The assignment of 
properties to the left or right property lists depends on the constraining element. 

Object property paths (R-55) ensure that if an individual x is connected by a sequence of object 
properties with an individual y, then x is also related to y by a particular object property. As 
Stephen-Hawking is the author of the book A-Brief-History-Of-Time whose genre is Popular-
Science, the object property path authorOf ◦ genre ⊑ authorOfGenre infers that Stephen-Hawking 
is an author of the genre Popular-Science. Thus, when representing the constraint using the RDF-
CV (see Table 3), the properties authorOf and genre are placed on the left side of the constraining 
element property path and the property authorOfGenre on its right side. The context class limits 
the constraint to individuals of a specific class. A context class may be an rdfs:Class, an 
owl:Class (as sub-class of rdfs:Class), or an rdfs:Datatype which is both an instance of and a sub-
class of rdfs:Class. As the property path constraint holds for all individuals within the data, the 
context class is set to the DL top concept ⊤ which stands for the super-class of all possible 
classes. 

 
TABLE 3: Object Property Paths as Property Constraint 

 
context class left p. list right p. list classes c. element c. value 

⊤ authorOf, genre authorOfGenre ⊤ property path - 

 
Constraints of 36% of the constraint types are not expressible in DL but can still be described 

using the RDF-CV such as constraints of the type literal pattern matching (R-44) which restrict 
literals to match given patterns. The universal quantification (R-91) Book ⊑ ∀ identifier.ISBN 
ensures that books can only have valid ISBN identifiers, i.e., strings that match a given regular 
expression. 

Even though constraints of the type literal pattern matching cannot be expressed in DL, OWL 

2 can be used to formulate this constraint: 
The first OWL 2 axiom explicitly declares ISBN to be a datatype. The second OWL 2 axiom 

defines ISBN as an abbreviation for a datatype restriction on xsd:string. The datatype ISBN can be 
used just like any other datatype like in the universal quantification above. 

ISBN a RDFS:Datatype ; owl:equivalentClass [ a RDFS:Datatype ; 
    owl:onDatatype xsd:string ;  
    owl:withRestrictions ([ xsd:pattern "^\d{9}[\d|X]$" ])] . 
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Table 4 presents (1) how the not in DL expressible literal pattern matching constraint and (2) 
how the in DL expressible universal quantification are both represented using the RDF-CV. 
Thereby, the context class ISBN, whose instances must satisfy the literal pattern matching 
constraint, is reused within the list of classes the universal quantification refers to. The literal 
pattern matching constraint type introduces the constraining element REGEX whose validation 
has to be implemented once like for any other constraining element. 

 
TABLE 4: Simple Constraints which are not Expressible in DL 

 
context class left p. list right p. list classes c. element c. value 

ISBN - - xsd:string REGEX "^\d{9}[\d|X]$" 

Book identifier - ISBN universal 
quantification 

- 

 

3.3.  Complex Constraints 
Complex constraints of the constraint type context-specific exclusive or of property groups (R-

13) restrict individuals of given classes to have all properties of exactly one of multiple mutually 
exclusive property groups. Publications, e.g., are either identified by an ISBN and a title (for 

books) or by an ISSN and a title (for periodical publications), but it should not be possible to 
assign both identifiers to a given publication. This complex constraint is expressible in ShEx: 

If The-Great-Gatsby is a publication with an ISBN and a title without an ISSN, The-Great-
Gatsby is considered as a valid publication. This complex constraint is generically expressible in 
DL: 

 
Publication ⊑ (¬E ⊓ F) ⊔ (E ⊓ ¬F) , E ≡ A ⊓ B , F ≡ C ⊓ D 

A ⊑ ≥ 1 isbn.string ⊓ ≤ 1 isbn.string , B ⊑ ≥ 1 title.string ⊓ ≤ 1 title.string 
C ⊑ ≥ 1 issn.string ⊓ ≤ 1 issn.string , D ⊑ ≥ 1 title.string ⊓ ≤ 1 title.string 

 

The DL statements demonstrate that the complex constraint is composed of many other 
complex constraints (minimum (R-75) and maximum qualified cardinality restrictions (R-76)) and 
simple constraints (intersection (R-15/16), disjunction (R-17/18), and negation (R-19/20)). 
Constraints of almost 14% of the constraint types are complex constraints which can be 
simplified and therefore formulated as simple constraints when using them in terms of syntactic 
sugar. As exact (un)qualified cardinality restrictions (R-74/80) (=n) and exclusive or of property 
groups (R-13) are constraint types of frequently used complex constraints, we propose to simplify 
them in form of simple constraints. As a consequence, the context-specific exclusive or of 
property groups complex constraint is represented as a generic constraint by means of the RDF-
CV more intuitively and concisely (see Table 5). 

 
TABLE 5: Simplified Complex Constraints 

 
context class left p. list right p. list classes c. element c. value 

Publication - - E, F exclusive or - 

E - - A, B intersection - 

F - - C, D intersection - 

Publication {  
    ( isbn string , title string ) | 
    ( issn string , title string ) } 
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A isbn - string = 1 

B title - string = 1 

C issn - string = 1 

D title - string = 1 

 
The primary key properties (R-226) constraint type is often useful to declare a given (datatype) 

property as the primary key of a class, so that a system can enforce uniqueness. Books, e.g., are 
uniquely identified by their ISBN, i.e., the property isbn is inverse functional (funct isbn-) which 
can be represented using the RDF-CV in form of a complex constraint consisting of two simple 
constraints (see Table 6). The meaning of these simple constraints is that ISBN identifiers can 
only have isbn- relations to at most one distinct book. 

 
TABLE 6: Primary Key Properties as Complex Constraints 

 
context class left p. list right p. list classes c. element c. value 

⊤ isbn- isbn - inverse property - 

Book isbn- - - ≤ 1 

 
Keys, however, are even more general, i.e., a generalization of inverse functional properties 

(Schneider, 2009). A key can be a datatype, an object property, or a chain of properties. For these 
generalization purposes, as there are different sorts of keys, and as keys can lead to 
undecidability, DL is extended with a special construct keyfor (Lutz, Areces, Horrocks, & Sattler, 
2005). When using keyfor (isbn keyfor Book), the complex constraint can be simplified and thus 

formulated as a simple constraint which looks like the following in concrete RDF turtle syntax: 
Complex constraints of frequently used constraint types which correspond to DL axioms like 

transitivity, symmetry, asymmetry, reflexivity and irreflexivity can also be simplified in form of 
simple constraints. Although these DL axioms are expressible by basic DL features, they can also 
be used in terms of syntactic sugar. 

Constraints of the irreflexive object properties (R-60) constraint type ensure that no individual 
is connected by a given object property to itself (Krötzsch et al., 2012). With the irreflexive 
object property constraint ⊤ ⊑ ¬∃authorOf.Self , e.g., one can state that individuals cannot be 
authors of themselves. When represented using the RDF-CV, the complex constraint aggregates 
three simple constraints (see Table 7). 

 
TABLE 7: Irreflexive Object Properties as Complex Constraints 

 
context class left p. list right p. list classes c. element c. value 

∃  authorOf.Self authorOf - Self existential 
quantification 

- 

¬∃  authorOf.Self - - ∃  authorOf.Self negation - 

⊤ - - ⊤,    
¬∃  authorOf.Self  

sub-class - 

 

[   a rdfcv:SimpleConstraint ; 
    rdfcv:contextClass Book ;  
    rdfcv:leftProperties ( isbn ) ;  
    rdfcv:constrainingElement "primary key" ] . 
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When using the irreflexive object property constraint in terms of syntactic sugar, the complex 
constraint can be expressed more concisely in form of a simple property constraint with exactly 
the same semantics (see Table 8): 

 
TABLE 8: Irreflexive Object Properties as Simple Constraints 

 
context class left p. list right p. list classes c. element c. value 

⊤ authorOf - -‐   irreflexive 
property 

- 

3.4.  Mapping Implementation 
Using the framework for the implementation of a constraint language is straight-forward. For 

each language construct, the corresponding constraint type has to be identified. Again we use the 
constraint Publication ⊑ ≥1 author.Person of the type minimum qualified cardinality restrictions 
(R-75) which is supported in OWL 2: 

From Table 2, we know the representation in our framework, which corresponds to the 
following RDF representation using the RDF-CV: 

The mapping simply constructs this generic representation out of the specific OWL 2 
representation using a SPARQL CONSTRUCT query: 

The SPIN engine is used to execute the mapping, the property spin:rule links an rdfs:Class 
with SPARQL CONSTRUCT queries. Each query defines an inference rule that is applied to all 
instances of the associated class and its subclasses. The inference rule defines how additional 

:Publication  
    a owl:Restriction ; 
    owl:minQualifiedCardinality 1 ; 
    owl:onProperty :author ; 
    owl:onClass :Person . 

[   a rdfcv:SimpleConstraint ; 
    rdfcv:contextClass :Publication ; 
    rdfcv:leftProperties ( :author ) ; 
    rdfcv:classes ( :Person ) ; 
    rdfcv:constrainingElement "minimum qualified cardinality restriction" ; 
    rdfcv:constrainingValue 1 ] . 

owl:Thing  
    spin:rule [ a sp:Construct ; sp:text """ 
        CONSTRUCT {             
            :minimum-qualified-cardinality-restrictions 
                a rdfcv:SimpleConstraint ; 
                rdfcv:contextClass ?this ; 
                rdfcv:leftProperties :leftProperties ; 
                rdfcv:classes :classes ; 
                rdfcv:constrainingElement "minimum qualified cardinality restriction" 
; 
                rdfcv:constrainingValue ?cv .   
            :leftProperties  
                rdf:first ?lp1 ; 
                rdf:rest rdf:nil .     
            :classes  
                rdf:first ?c1 ; 
                rdf:rest rdf:nil . } 
        WHERE { 
            ?this 
                a owl:Restriction ; 
                owl:minQualifiedCardinality ?cv ; 
                owl:onProperty ?lp1 ; 
                owl:onClass ?c1 . } """ ; ] . 

105



Proc. Int’l Conf. on Dublin Core and Metadata Applications 2015 

 

triples can be inferred from what is stated in the WHERE clause. For each binding of the pattern 
in the WHERE clause of the rule, the triple templates from the CONSTRUCT clause are 
instantiated and added as inferred triples to the underlying model. At query execution time, the 
SPARQL variable ?this is bound to the current instance of the class. As each resource per default 
is assigned to the class owl:Thing, this inference rule is evaluated for each subject of the input 
RDF graph. 

The framework and therefore the constraint types are implemented in exactly the same way by 
providing other SPIN mappings which encompass the SPIN/SPARQL queries that validate 
constraints and produce constraint violation messages if a constraint is violated, as described in 
our previous paper about the DSP implementation (Bosch & Eckert, 2014b).15  

3.5.  Constraint Transformation 
As stated in Section 2, we see a huge potential in the possibility to transform semantically 

equivalent constraints from one high-level constraint language to another via the RDF-CV 
representation, to avoid that every possible combination of constraint languages has to be mapped 

separately. The following SPIN inference rule exemplifies this approach and provides a mapping 
from RDF-CV back to the OWL 2 constraint of the type minimum qualified cardinality 
restrictions: 

It can be seen that the mapping is quite similar to the first mapping and basically simply 
switches the CONSTRUCT and WHERE part of the query, with slight adjustment in the structure 
of the variables. Potentially an even simpler representation for the mapping could be found that 
would enable the creation of forward and backward mappings out of it. We didn’t investigate this 
further, though, and it is not yet clear if there can be cases where the backward mapping is more 
different. 

4.  Related Work 
In this section, we present current languages for RDF constraint formulation and RDF data 

validation. SPIN, SPARQL, OWL 2, ShEx, ReSh, and DSP are the six most promising and 

                                                        
15 At the time of this writing, not all mappings for the constraint types are implemented, but of course the 
implementations can be complemented and adapted to own requirements, as needed. The most recent 
implementation can be found here: https://github.com/boschthomas/rdf-
validation/blob/master/SPIN/RDF-CV-2-SPIN.ttl 

owl:Thing  
    spin:rule [ a sp:Construct ; sp:text """ 
        CONSTRUCT {             
            ?cc 
                a owl:Restriction ; 
                owl:minQualifiedCardinality ?cv ; 
                owl:onProperty ?lp1 ; 
                owl:onClass ?c1 . } 
        WHERE {  
            ?this 
                a rdfcv:SimpleConstraint ; 
                rdfcv:contextClass ?cc ; 
                rdfcv:leftProperties ?leftProperties ; 
                rdfcv:classes ?classes ; 
                rdfcv:constrainingElement "minimum qualified cardinality restriction" 
; 
                rdfcv:constrainingValue ?cv .   
            ?leftProperties  
                rdf:first ?lp1 ; 
                rdf:rest rdf:nil .     
            ?classes  
                rdf:first ?c1 ; 
                rdf:rest rdf:nil . } """ ; ] . 
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mostly used constraint languages. In addition, the W3C Data Shapes Working Group currently 
develops SHACL, an RDF vocabulary for describing RDF graph structures. 

The SPARQL Query Language for RDF (Harris & Seaborne, 2013) is generally seen as the 
method of choice to validate RDF data according to certain constraints (Fürber & Hepp, 2010), 
although, it is not ideal for their formulation. In contrast, high-level constraint languages are 
comparatively easy to understand and constraints can be formulated more concisely. Declarative 
languages may be placed on top of SPARQL and SPIN when using them as implementation 
languages. The SPARQL Inferencing Notation (SPIN)16 (Knublauch, Hendler, & Idehen, 2011) 
provides a vocabulary to represent SPARQL queries as RDF triples and uses SPARQL to specify 
logical constraints and inference rules (Fürber & Hepp, 2010). Kontokostas et al. define 17 data 
quality integrity constraints represented as SPARQL query templates called Data Quality Test 
Patterns (DQTP) (Kontokostas et al., 2014). 

The Web Ontology Language (OWL) (Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph, 
2012) formally specifies the intended semantics of conceptual models about data and therefore 
enables software to understand data. OWL has become a popular standard for data representation, 
data exchange, and data integration of heterogeneous data sources. Besides that, the retrieval of 
data benefits from semantic knowledge specified using OWL. In combination with the OWL-
based Semantic Web Rule Language (SWRL) (Horrocks et al., 2004), OWL provides facilities for 
developing very powerful reasoning services. Reasoning on RDF data enables to derive implicit 
data out of explicitly stated data. OWL is based on formal logic and on the subject-predicate-
object triples from RDF. OWL is actually a description logic with underlying formal semantics 
which allows one to assign truth values to syntactic expressions. OWL specifies semantic 
information about specific domains, describes relations between domain classes, and thus allows 
the sharing of conceptualizations. 

Because of the design of OWL for reasoning, there are claims that OWL cannot be used for 
validation. In practice, however, OWL is well-spread and RDFS/OWL constructs are widely used 
to tell people and applications about how valid instances should look like. In general, RDF 
documents follow the syntactic structure and the semantics of RDFS/OWL ontologies which 
could therefore not only be used for reasoning but also for validation. 

Stardog Integrity Constraint Validation (ICV) and the Pellet Integrity Constraint Validator 
(ICV) use OWL 2 constructs to formulate constraints. The Pellet ICV17 is a proof-of-concept 
extension for the OWL 2 DL reasoner Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007). 
Stardog ICV18 validates RDF data stored in a Stardog database according to constraints which 
may be written in SPARQL, OWL 2, or SWRL (Horrocks et al., 2004). 

Shape Expressions (ShEx) (Prud’hommeaux, 2014; Solbrig & Prud’hommeaux, 2014; 
Prud’hommeaux, Labra Gayo, & Solbrig, 2014; Boneva et al., 2014) specifies a language whose 
syntax and semantics are similar to regular expressions. ShEx associate RDF graphs with labeled 
patterns called shapes which are used to express formal constraints on the content of RDF graphs. 
Resource Shapes (ReSh) (A. Ryman, 2014) defines its own vocabulary for specifying shapes of 
RDF resources. Ryman, Hors, and Speicher define shape as a description of the set of triples a 
resource is expected to contain and as a description of the integrity constraints those triples are 
required to satisfy (A. G. Ryman, Hors, & Speicher, 2013). 

The Dublin Core Application Profile (DCAP) and Bibframe Profiles are approaches to specify 
profiles for application-specific purposes. The term profile is widely used to refer to a document 
that describes how standards or specifications are deployed to support the requirements of a 
particular application, function, community, or context. In the metadata community, the term 
application profile has been applied to describe the tailoring of standards for specific 

                                                        
16 http://spinrdf.org 
17 http://clarkparsia.com/pellet/icv 
18 http://docs.stardog.com/#_validating_constraints 
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applications. A Dublin Core Application Profile (DCAP) (Coyle & Baker, 2009) defines 
metadata records which meet specific application needs while providing semantic interoperability 
with other applications on the basis of globally defined vocabularies and models. The Singapore 
Framework for Dublin Core Application Profiles (Nilsson, Baker, & Johnston, 2008) is a 
framework for designing metadata and for defining DCAPs. The framework comprises 
descriptive components that are necessary or useful for documenting DCAPs. 

The DCMI Abstract Model (Powell, Nilsson, Naeve, Johnston, & Baker, 2007) is required for 
formalizing a notion of machine-processable application profiles. It specifies an abstract model 
for Dublin Core metadata which is independent of any particular encoding syntax. Its primary 
purpose is to specify the components used in Dublin Core metadata. Nilsson et al. (Nilsson, 
Powel, Johnston, & Naeve, 2008) depict how the constructs of the DCMI Abstract Model are 
represented using the abstract syntax of the RDF model. A Description Set Profile (DSP) 
(Nilsson, 2008) is a generic constraint language which is used to formally specify structural 
constraints on sets of resource descriptions within an application profile. DSP constrains 
resources that may be described by descriptions in a description set, the properties that may be 
used, and the values properties may point to. BIBFRAME19 (Kroeger, 2013; Godby, Carol Jean 
and Denenberg, Ray, 2015; Miller, Eric and Ogbuji, Uche and Mueller, Victoria and 
MacDougall, Kathy, 2012) is the result of the Bibliographic Framework Initiative and defines a 
vocabulary (Library of Congress, 2014a, 2014c) which has a strong overlap with DSP. 
BIBFRAME Profiles (Library of Congress, 2014b) are essentially identical to DCAPs. 

Schemarama20 is a validation technique for specifying the types of sub-graphs you want to 
have connected to a particular set of nodes in an RDF Graph. Schemarama allows to check that 
RDF data has required properties. Schemarama is based on Schematron (ISO/IEC, 2006), an 
XML schema and XML structure validation language which works by finding tree patterns within 
an XML document. Schemarama is also based on the Squish RDF Query language (Miller, 
2001), an SQL-like query language for RDF, instead of SPARQL. 

In addition to the formulation of constraints, SPIN (open source API), Stardog ICV (as part of 
the Stardog RDF database), DQTP (tests), Pellet ICV (extension of Pellet OWL 2 DL reasoner) 
and ShEx offer executable validation systems using SPARQL as implementation language. 

The W3C Data Shapes Working Group currently develops SHACL (Knublauch, 2015; Boneva 
& Prud’hommeaux, 2015; Prud’hommeaux, 2015), the Shapes Constraint Language, an RDF 
vocabulary for describing RDF graph structures. Some of these graph structures are captured as 
shapes, which group together constraints about the same RDF nodes. Shapes provide a high-level 
vocabulary to identify predicates and their associated cardinalities, datatypes and other 
constraints. Additional constraints can be associated with shapes using SPARQL and similar 
executable languages. These executable languages can also be used to define new high-level 
vocabulary terms. SHACL shapes can be used to communicate data structures associated with 
some process or interface, generate or validate data, or drive user interfaces. 

5.  Conclusion and Future Work 
In this paper, we outlined our idea of a general framework to support the mapping of high-level 

constraint languages to a generic representation, which can directly be validated by providing a 
mapping from the generic representation to SPIN/SPARQL queries to actually validate data 
against constraints provided in the high-level language. The framework consists of a very simple 
conceptual model using the RDF Constraints Vocabulary (RDF-CV) which has been introduced 
in this paper. The core of the framework is the definition of 103 constraining elements that are 
used to define constraints of all 81 constraint types that to date have been identified within the 
DCMI RDF Application Profiles Task Group and in cooperation with the W3C Data Shapes 

                                                        
19 http://bibframe.org 
20 http://www.xml.com/pub/a/2001/02/07/schemarama.html 
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Working Group. The full definition of all constraint types and the generic representation of the 
types in RDF-CV is provided in an accompanying technical report (Bosch et al., 2015). 

We have demonstrated how the framework can be used to map a constraint language to RDF-
CV and also how to map back from RDF-CV to the constraint language. The latter enables the 
transformation of semantically equivalent constraints from one constraint language to another via 
the RDF-CV intermediate representation. 

We think that this approach is suitable 
1. to implement the validation of constraints consistently across constraint languages, 
2. to support the extension of constraint languages when additional constraint types should be 

supported by means of a simple mapping, and 
3. to enhance or rather establish the interoperability of different constraint languages. 
It is part of future work to finalize the implementation of all 81 constraint types in our RDF 
Validator, to fully map constraint languages to RDF-CV (first and foremost DSP and OWL 2) 
and of course keep the framework in sync with the ongoing work in the working groups. 
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