Metadata for Models Generated by openModeller

Agnei de Carvalho Silva, Cleverton Ferreira Borba and Pedro Luiz Pizzigatti Corrêa
Centro Universitário Adventista de São Paulo – UNASP and USP, Brazil

Abstract
This poster presents a proposal for the reuse of models generated by the species distribution tool, openModeller. It is essential for the reuse of the model, use metadata pattern to ensure biodiversity data interoperability generated by this tool.

Metadata for Models Tools
According to Berendsohn et al. (2011), one of the most serious "bottlenecks" in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, applications software, and services for analysis, visualization and publication. The main reasons to use metadata patterns in modeling tools are: allow representation of clearer information, interoperable data between repositories, provide standardized structures, increase data accessibility (Dziekaniak, 2010), preserving information resources and documenting legal aspects of resources (Berendsohn et al., 2011). In this context, we can explore the Dublin Core metadata, because this help us standardize the models, generated by species distribution modeling tools.

The Global Biodiversity Information Facility (GBIF) and Biological Collection Access Service (BioCASE) are examples of tools that make use of metadata can cite some of them: ABCD (Access to Biological Collection Data) and also the DwC (Darwin Core) metadata is used to support information from the portals DNA Bank Network and the GeoCASE (Berendsohn et al., 2011). Now, EDIT Platform supports the export and import of data in the standards (ABCD, DwC and also in the SDD - structured Descriptive Data). Among other tools can also cite openModeller (Munoz et al., 2011), receiving information by GBIF and TAPIR/Darwin Core system, utilizing as metadata standards Darwin Core and ABCD.

Dublin Core Application for Models Generated by openModeller Tool
Among the existing tools, openModeller stands out with some advantage over other species distribution modeling tools because it allows different formats of data inputs for occurrence of species, environmental data and parameters for the algorithms, above all, different algorithms, simplifying thus to user/users group to reach your aim without needing to know different platforms and modeling tools. One of the problems of the other current tools of species distribution modeling is that they generate models with their standard independent and it cannot be used in other tools.

The need to use the metadata for models generated by OpenModeller tool, allows the data standardization to other platforms, producing data to be reused in the openModeller, and in future, in other tools. This poster proposes the use of a Dublin Core metadata standard to present and make available the models generated by the species distribution modeling tool openModeller, in order to facilitate interoperability of the data generated by tool itself or other modelling tools.

Interoperability of Data Generated
Interoperability only happens, when a well-defined standard is implemented in the data that will be interoperable. Using an ontology as a class and the Dublin Core metadata as standard, we can ensure that the export and import of the generated models also interoperate between any openModeller tool or any other tool that makes use of species distribution models. Models data will be available on the Internet so any user will may have free access to this data to visualization or to any other task. Image 1 clearly describes the idea described in this post.

Conclusion
It is essential for the reuse of the model, use metadata pattern to ensure biodiversity data interoperability generated by this tools. In this poster we use the Dublin Core metadata for the initial stage of information that need to be reused. Dublin Core metadata is an important domain to start the standardization of new tools particularly in data generated by species distribution tools that include: algorithm, parameters, climatic packages, biodiversity data, and the model.

References