
Linked Data for
Production (LD4P)
TECHNICAL SERVICES WORKFLOW EVOLUTION THROUGH TRACER
BULLETS (STANFORD PROJECTS)

Arcadia Falcone
Josh Greben
Nancy Lorimer

Introduction:
LD4P, ITS GOALS & ITS CONTEXT IN THE CURRENT
LIBRARY TECHNICAL SERVICES PARADIGM

Linked Data for Production
o Overall focus:

Lay the groundwork for moving library technical services
workflow into a linked data environment

o Subprojects within each institution:
o ontology development

o tools investigation

o workflow analysis

Stanford Projects
Performed Music Ontology (PMO)
◦ Extension to BIBFRAME 2.0

Workflows in Technical Services (“tracer bullets”)
◦ MARC-based workflows (vendor-supplied cataloging, original cataloging)

◦ digital repository workflows (individual & bulk deposit of metadata)

Workflows Conversion

Enhancements Data creation

ToolsThemes

Workflows:
MODELING METADATA PROCESSES FOR A
HYBRID LINKED DATA ENVIRONMENT

Arcadia Falcone

Goals

◦ To understand current technical services workflows both as specific tasks and
generalized processes

◦ To model the processes of parallel linked data workflows, with their
relationships to each other and to current workflows

◦ To begin identifying implementation specifications for systems, tools, and
training

The “tracer bullet” paradigm
◦ Lightweight, end-to-end implementation with real data

Descriptive
metadata

Discovery
environment

Holdings

Operations

Publishing
metadata
elsewhere

Digital
objects in
repository

Purchasing

Parameters

◦ A hybrid environment involving MARC, MODS, BIBFRAME, and other standards will continue
to exist both locally and globally

◦ “Hybrid production” workflows

◦ The endpoint is a discovery layer that integrates MARC, MODS, and BIBFRAME data

◦ Processes should be scalable and require no additional human intervention beyond current
workflows

◦ Processes should be defined so as to be modular and tool-agnostic

Four selected workflows

1. Vendors supply MARC records that an automated process loads into our ILS

…and into our triplestore as linked data

2. Metadata staff create original description of resources

…natively in a linked data editor

3. Users create description as part of digital object self-deposit in a web-based interface

…that is stored as linked data

4. A bulk process transforms structured metadata for a large collection of digital objects

…into linked data describing objects in our digital repository

Roadmap for workflow analysis

Comprehensive
representation of
current workflow

High-level model
of current
workflow

High-level model
of linked data

workflow

Merged high-level model of
hybrid workflow

Tracer bullet
implementation

of hybrid
workflow

Workflow #1: task-based model

provide
indexed data

ILS

Index
Unified

discovery layer

MARC to
BIBFRAME
converter Triplestore

map & index

Vendors

SPARQL
endpoint/

API

enhance
MARC data

provide MARC
records & updates

pass updates

send
data

return
reconciled data

expose
data

map & index

Reconciliation
services

Vendor

Workflow #1: process-based model

link to
operational
record

send data

Workflow #2: task-based model

link to
operational
record

provide
indexed data

ILS

Index
Unified

discovery layer

Triplestore

map & index

SPARQL
endpoint/

API

send
data return

reconciled data

expose
data

map & index

Reconciliation
services

BIBFRAME
editor

External
RDF &
URIs

lookup

lookup

Workflow #2: process-based model
External bib.
& authority

records

MARC
editor

Vendors

enhance
MARC data

search & import

update

update(?)

pass record

MARC TO BIBFRAME
EXPERIMENTS IN DATA ENHANCEMENT AND CONVERSION

Josh Greben
Nancy Lorimer

Ckey2Bibframe2

.mrc BIBFRAME

ModBibFrame
.
.
.

Bulk Conversion with URIs or Fingerprints

#MARCXML

LD4L BIBFRAME Converter Pipeline

Component Straw-man for Conversion with Reconciliation Workflow

Component Straw-man for Conversion + Editor + Reconciliation Workflow

Component Diagram for Conversion with Reconciliation
Workflow with Pipeline Architecture

Component Diagram for Conversion Workflow with
Pipeline Architecture, Reified

BIBFRAME 2 to Solr Mapping

BIBFRAME 2 SPARQL Queries

Conversion Questions
o URIs—where do you get them?

o are there other enhancements you can do?

o granularity of conversion

o adding local field conversions to a more generic converter
• converter maintenance

o compatibility with other conversions and original metadata
creation

Getting URIs
oBACKSTAGE LIBRARY WORKS
o Providing LC-NAR, VIAF, ISNI URIs for a few years now in authority

records

o Recently began adding selected URIs directly in bib records

o SHARE-Virtual Discovery Environment
o Has taken converted our entire bib file

o Can convert MARC to BIBFRAME, and soon MODS to BIBFRAME

o Has ability to reconcile at basic and enhanced levels

DATA CREATION
REQUIREMENTS & TOOLS

Josh Greben
Nancy Lorimer

The Bibframe Editor…
Needs prefabricated triples (i.e. profiles) and a way to apply them to your work

Needs a place to temporarily remember the data
◦ Memory store

◦ Loopback API Server (a la loopback.io)

Needs a way to fetch changes made to profiles
◦ Profile-edit server with http file endpoint

◦ Trigger file download

Needs a way to do lookups to id.loc.gov and other sources
◦ Cross-domain Scripting

Needs a way and a place to permanently store the triples data
◦ Reformat JSON to suit needs of posting to triplestore

Needs a way to handle Reconciliation…

Lookups: LOC Suggest API
http://id.loc.gov/authorities/performanceMediums/suggest/?ensemble

Lookups: rdaregistry.info & id.loc.gov
getting ID and English label

http://rdaregistry.info/termList/RDAproductionMethod.jsonld http://id.loc.gov/authorities/performanceMediums.json

Object

@graph

@id, ConceptScheme (label)

$.[1]['@id']
$.[1]['ToolkitLabel'].en

$.[1]['@id']
$.[1]['ToolkitLabel'].en

$.[1]['@id']
$.[1]['ToolkitLabel'].en

Object

@id, schema (URI)

($.[1]['@id']).split(“,”)[0]
If

($.[1]['http://www.loc.gov/ma
ds/rdf/v1#authoritativeLabel'][

0]['@language'] == “en”)
{$.[1]['http://www.loc.gov/ma
ds/rdf/v1#authoritativeLabel'][

0]['@value']}

($.[1]['@id']).split(“,”)[0]
If

($.[1]['http://www.loc.gov/ma
ds/rdf/v1#authoritativeLabel'][

0]['@language'] == “en”)
{$.[1]['http://www.loc.gov/ma
ds/rdf/v1#authoritativeLabel'][

0]['@value']}

RDF to TripleStore (BFE Produced)

RDF to TripleStore (JSON-LD)

BioPortal/BiblioPortal
o repository of biomedical ontologies

o provides
o ontology summaries & histories

o viewing statistics

o ontology details—classes & properties in hierarchies

o mapping ability

o new “slice” called BiblioPortal
o are working to make it a more independent portal

CEDAR

CEDAR = The Center for Expanded Data Annotation and Retrieval

Mission: CEDAR will develop information technologies that make authoring complete metadata
much more manageable, and that facilitate using the metadata in further research.

Elements:
 Interfaces and tools built and tested specifically for metadata creation

 Consistency in terminology

 Machine learning

 Editing capabilities

 Training and outreach

 Building on past work and leveraging ongoing collaborations

Template

CEDAR entry form

BF templates for RDA book
cataloging

LC Editor vs CEDAR: Similarities
o ability to do custom labelling that “hides” the ontology terms

o ability to do lookups to value vocabularies

o default values

o ability to repeat “fields”

o can use multiple ontologies

o primary output in JSON-LD

o neither deals well at the moment with multiple properties for the same class

o the profile/template provides the primary definition of the application profile

LC Editor vs CEDAR: Differences
LC

• properties & classes entered manually by
profile creator

• individual elements are reusable, using the
same profile; when the element changes in
one place, it changes in every profile it is used
in

• look ups restricted to full vocabularies (e.g. all
LCGFT)

•no validation or extended application profile
ability (e.g. date type) beyond basic profile

CEDAR

• properties and classes added through lookup
& directly linked to ontology

•individual elements are reusable, but must be
duplicated in each template; when the
element changes in one place, it does not
change in other places

• look ups can be restricted to individual
children of a class or to hand-picked values

• validation of entries including text, date
(provides xsd:date), URIs, numbers

Moving forward…
o Internal
o working to complete workflow analysis
o making current tracer bullets more robust & integrating SHARE-VDE & BSLW
o further enhancement of CEDAR templates

o SHARE-VDE
o more conversion (MODS to BF and MARC to BF extensions)

o reconciliation of URIs
o data enhancements
o exploring potential for sharing data

o Broader Community
o work with the PCC to host a linked data sandbox for community experimentation
o filling out application profiles to include relationships from RDA Registry
oworking with the community to make BF a more community-based ontology

