
Maintaining RDF
Vocabularies in
Spreadsheets

Gregg Kellogg 
gregg@greggkellogg.net 

@gkellogg
http://ruby-rdf.github.io/presentations/Maintaining-RDF-Vocabularies-DC2017/index.html

mailto:gregg@greggkellogg.net

Origins of Practice

• Spreadsheets have been used (an abused) for many
purposes over time.

• Convenient way to edit and maintain small amounts of
tabular data

• … Sometimes grows to too much data

• … Sometimes used for non-tabular data

Origins of Practice

• W3C maintains many small vocabularies

• Specifications may define namespaces with terms

• Test Suites may extend other test suites and/or need to
reduce to available datasets for processing (e.g., EARL
reports)

Uses of Vocabularies

• Machine-readable metadata

• Classes, Properties, Datatypes, Domains, Ranges

• Human-readable

• Developer Documentation

• Generate/maintain JSON-LD Contexts

• Context can include the full vocabulary definition
extractable as RDF

General Approaches

• No vocabulary document (described in prose only)

• Manage RDF serializations by hand (RDF/XML, Turtle, JSON-LD)

• Use Protégé

• Create alternate representations automatically

• Possible for RDF/XML, Turtle, N-Triples

• Awkward for RDFa or JSON-LD

• Use a convenient non-RDF representation to derive other formats

• Spreadsheets!

No vocabulary

• Example: RDFa Processor
Status*

• Advantages: Simple for
editor

• Disadvantages: No
machine-readable
representation

* https://www.w3.org/TR/rdfa-core/#processor-status

• An rdfa:Error must be generated when the document fails to
be fully processed as a result of non-conformant Host
Language markup.

• A rdfa:Warning must be generated when a CURIE prefix fails
to be resolved.

• A rdfa:Warning must be generated when a Term fails to be
resolved.

https://www.w3.org/TR/rdfa-core/#processor-status
https://www.w3.org/TR/rdfa-core/#processor-status
https://www.w3.org/TR/rdfa-core/#processor-status

Hand-built vocabulary

• Example: RDF Schema*

• Advantages: Simpler for
spec editor.

• Disadvantages: HTML and
N-Triples not maintained
together. HTML not
machine-readable

* https://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_resource

All things described by RDF are called resources, and are instances
of the class rdfs:Resource. This is the class of everything. All other
classes are subclasses of this class. rdfs:Resource is an instance of
rdfs:Class.

rdfs:Resource a rdfs:Class ;  
 rdfs:isDefinedBy <http://www.w3.org/2000/01/rdf-schema#> ;  
 rdfs:label "Resource" ;  
 rdfs:comment "The class resource, everything." .  

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_resource

Protégé

• Great tool for managing
complex vocabularies

• Advantages: WYSIWYG
ontology development. Fully
supported tool.

• Disadvantages: Little control
over serialization. Details
can get lost in UI.

RDF Source Document

• Example: JSON-LD Test-Suite*

• Hand maintain Turtle RDFS
document and JSON-LD context

• Direct transform Turtle to JSON-
LD

• Use Haml template to generate
HTML from JSON-LD.

• Advantages: Single source,
consistency

• Disadvantages: Context made
by hand. JSON-LD may not be
convenient.

* https://github.com/json-ld/json-ld.org/tree/master/test-suite

vocab.ttl vocab_context.jsonld

vocab_gen.rb

vocab.jsonld vocab.html

vocab_template.haml

https://github.com/json-ld/json-ld.org/tree/master/test-suite
https://json-ld.org/test-suite/vocab.html

Vocabulary in CSV

• Examples: CSVW[1], ShEx[2]

• Information in spreadsheet

• script creates JSON object
indexed by type

• after processing, objects
gathered into JSON-LD to
describe both context and
vocabulary

• Custom Turtle generation

• Haml template-based HTML
generation

[1] https://github.com/w3c/csvw/tree/gh-pages/ns
[2] https://github.com/shexSpec/shexspec.github.io/tree/master/ns

_vocab.csv template.haml

csvw.jsonld

csvw.ttl

index.html

mk_vocab.rb

https://github.com/w3c/csvw/tree/gh-pages/ns
https://github.com/shexSpec/shexspec.github.io/tree/master/ns
https://www.w3.org/ns/csvw
https://github.com/w3c/csvw/tree/gh-pages/ns
https://github.com/shexSpec/shexspec.github.io/tree/master/ns

RDF.rb serialization
support

• Ruby RDF.rb internalizes RDFS+ vocabularies for convenience
and reasoning

• Read and RDF serialization to create Vocabulary

• Vocabulary supports .to_ttl, .to_jsonld, and .to_html with
reasonable defaults which may be customized

