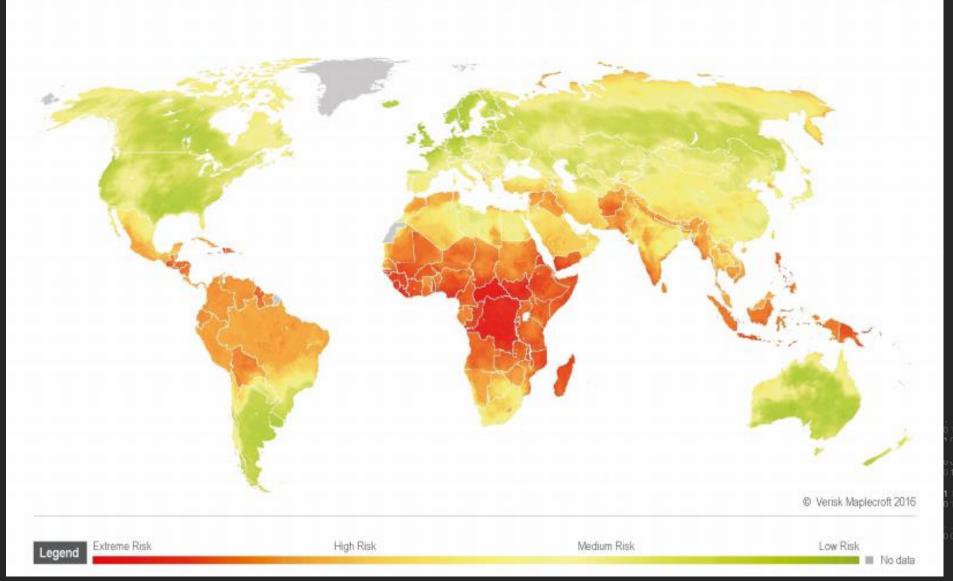
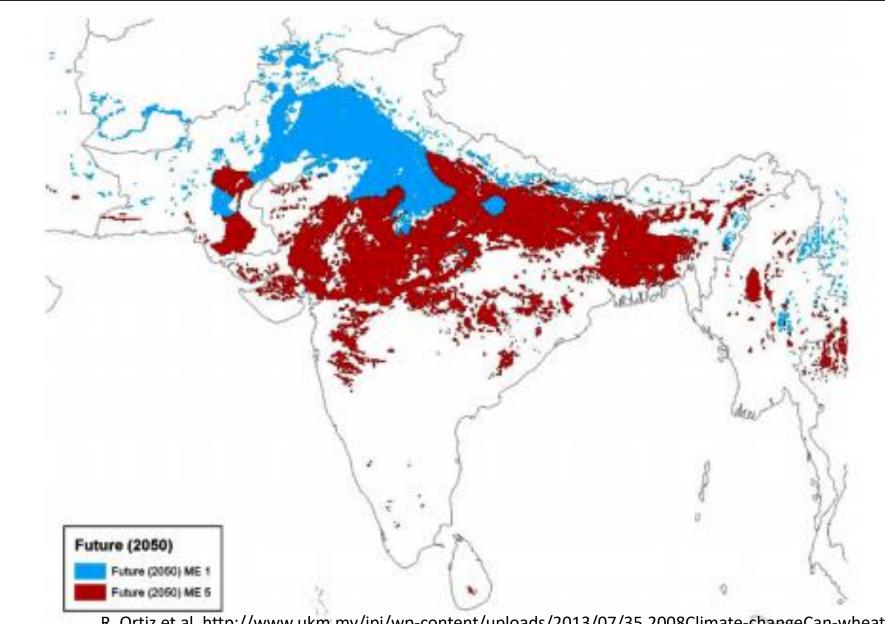
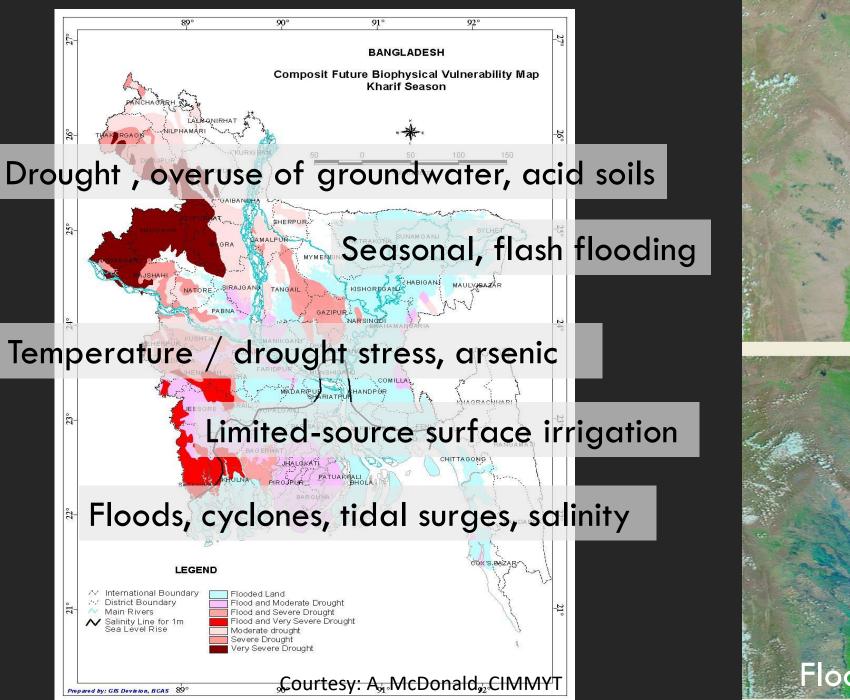
Standards Spur Agricultural Innovation

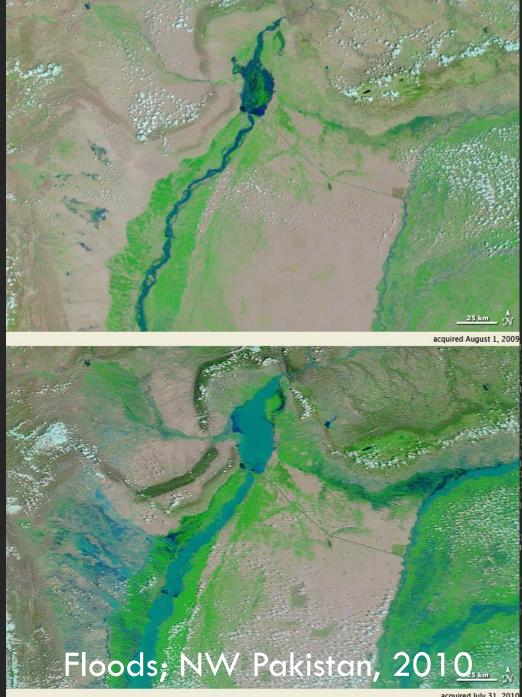
(Or: Your work impacts livelihoods...)

Platform for Big Data in Agriculture




CGIAR – agricultural research for development




Climate Change Vulnerability Index 2017

R. Ortiz et al. http://www.ukm.my/ipi/wp-content/uploads/2013/07/35.2008Climate-changeCan-wheat-beat-the-heat.pdf

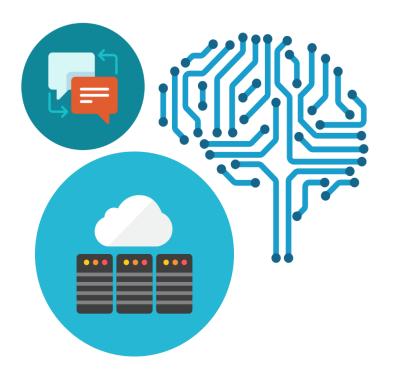
Ag R4D: Complex networks, systems, infrastructure...

Multidisciplinary (agronomy, breeding, socioeconomics, bioinformatics, data science)

Multi-scale (genetic/genomic to landscape)

Multi-stakeholder consultative, participatory processes (planning to implementing)

Highly heterogeneous, uncontrollable, challenging environments


Hey Cigi, when should I plant my maize? How should I manage my crop?

Real-time decision support for farmers

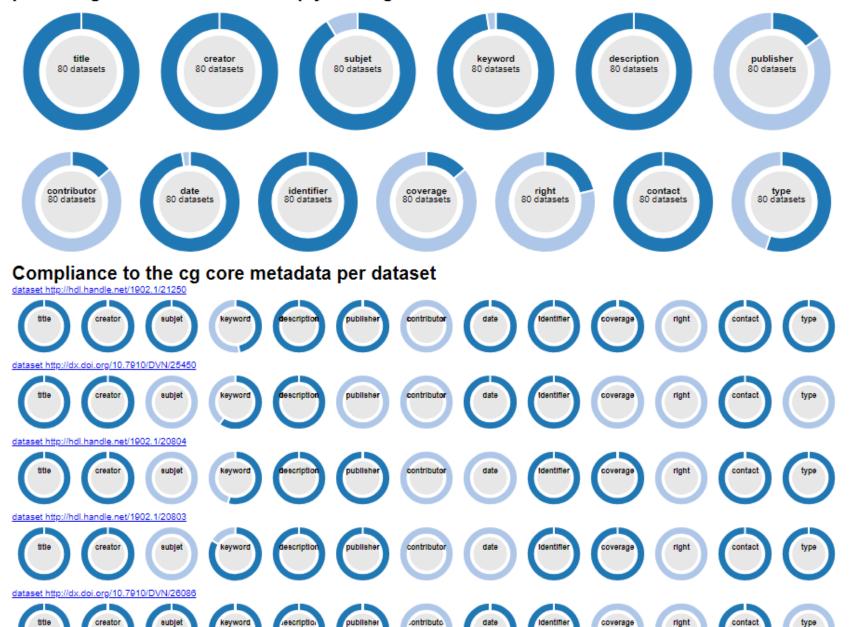
Easy natural language as an interface

Smart artificial intelligence trained by CGIAR and partners

Leveraging multiple open, harmonized and interoperable databases

Opportunities

Making data: Findable; Accessible; Interoperable; Reusable


Data findability – CG Core Metadata Schema

DC Element	Qualifier	Required?	Definition
Title	Title of resource	Required	Official or unofficial title of the document, data set, image, etc.
Creator	Name of resource creator	Required	Creators of the item—typically a person. Could be an organization in case of corporate authors (e.g. Center reports)
Creator	ID of resource creator - if any	Required when applicable	ID of creator; use if ORCID, SCOPUS, or other type of creator ID scheme is in use
Creator	ID type of resource creator - if any	Required when applicable	Used to indicate the type of Creator ID – ex: SCOPUS, ORCID, etc.
Subject	General subject matter	Required	Subject matter of the research, technologies tested, etc.
Subject	AGROVOC subject term	Optional	AGROVOC subject matter or research area
Subject	Subject - other vocabularies (e.g. MeSH)	Required if applicable	Subject matter or research area from domain-specific vocabularies, if missing from AGROVOC
Description	Abstract of work	Required	Abstract or other description of the item
Publisher	Publisher of journal	Required when applicable	Entity responsible for publication, distribution, or imprint
Contributor	CGIAR Center name	Required	Research Centers with which creator(s) are affiliated
Contributor	non-CGIAR entity name	Required when applicable	Non-CGIAR partner entity with which creator/s are affiliated
Contributor	CRP	Required when applicable	CGIAR Research Program with which the research is affiliated
Contributor	Funding agency	Required	Funder, funding agency or sponsor
Contributor	Project	Required	Name of project with which the research is affiliated

Bioversity Dataverse

A total of 80 datasets has been uploaded on dataverse

Opportunities

Organi

Bringing Big Data to Agriculture, and Agriculture to Big Data

in data ement

interoperability,

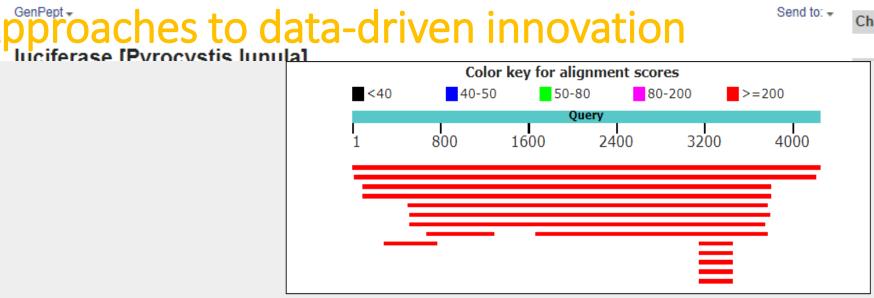
combining,

1100 00110 100. 110 00/ 100. 110 00/ 11010 100 10 J 101 J1 J1 0 101 101 001 0

Scale of Data

	Little Data	Shared Data
Mary	my data	data shared
Bob	my data	data shared
Sheri	my data	data shared

Aggregated Data


Aggregated co-created and connectable back to user

Aggregated or Combined,
Depersonalized
BIG DATA pool

Aggregated or combined from multiple sources, de-personalized, but possibly connectable back to user

Approaches to data-driven innovation


Biomedical informatics → Only ~4% deposition into PubMed Central until mandated

<u>escriptions</u>

Coguenose producina cignificant alignmente:

1	equences producing significant alignments:						
5	select: All None Selected:0						
li	Alignments Download GenBank Graphics Distance tree of results						•
	Description	Max	Total	Query	Е	Ident	Accession
	Description	score	score	cover	value	ident	Accession
	Pyrocystis lunula luciferase (lcfB) mRNA, complete cds	7808	9546	100%	0.0	100%	AF394060.1
	Pyrocystis lunula luciferase (lcfA) mRNA, complete cds	6357	8027	98%	0.0	94%	AF394059.1
	Pyrocystis fusiformis luciferase gene, complete cds	3648	4443	87%	0.0	85%	AY766384.1
	Pyrocystis noctiluca luciferase gene, complete cds	3594	5216	87%	0.0	84%	AY766385.1
	Gonyaulax polyedra luciferase mRNA, complete cds	2085	2085	77%	0.0	78%	AF085332.1
	Alexandrium tamarense luciferase gene, complete cds	1783	1783	77%	0.0	77%	AY766383.1
	Alexandrium affine luciferase gene, complete cds	1749	1749	76%	0.0	77%	AY766382.1

Getting to FAIR...

Global Agricultural Research Data Innovation & Acceleration Network

search GARDIAN

<u>Demo</u>

Q

enabling discovery of agricultural data and publications across the CGIAR system and beyond

HOME

SEARCH

ANALYTICS

DATA SEARCH

Search results: 10106

FILTERS

YEAR

All

CGIAR CENTER

ΑII $\overline{}$

LOOK IN

All fields

DATASETS (83)

J11 11001 1100

ICRAF

2014	2014 Global Nutrition Report Dataset IFPRI
2017	Food Trees Project Nutrition and Consumption Data ICRAF
2015	2015 Global Nutrition Report Dataset IFPRI
2016	Fruiting Africa Endline Consumption and Nutrition Survey ICRAF
2018	His and Hers, time and income: How intra-household dynamics impact nutrition in agricultural households
2017	Food Trees Project Data Collection Tools: Nutrition and Consumption
2018	Probabilistic Causal Models for Nutrition Outcomes of Agricultural Actions - Kenya model ICRAF
2013	Integrating vegetables into maize-based systems for enhanced nutrition and income generation: Scoping study by AVRDC
2017	Probabilistic Causal Models for Nutrition Outcomes of Agricultural Actions - Uganda model

ACCESS RIGHTS

License

Not Defined

Terms of use

VIEW

LINKS

DO

REFERS TO

DATASET

His and Hers, time and income: How intra-household dynamics impact nutrition in agricultural households

International Center for Tropical Agriculture (CIAT)

SUMMARY

Understand how dietary diversity is impacted by intra-household decision making processes related to income, nutrition information and time allocation (with primary focus on principle men and women in the household). In particular, we will examine how nutrition information, income, and time allocation impact food consumption. Furthermore, we will analyze whether households where women have more decision-making power, as measured by choice experiments, systematically differ in their actual consumption patterns from households where men's preferences are more highly represented in decision-making. We will use two types of data collection instruments: Surveys (Household and individual level) Hypothetical and real choice experiments

FAIR COMPLIANCE

F = 4.75 / 5

A = 3.76 / 5

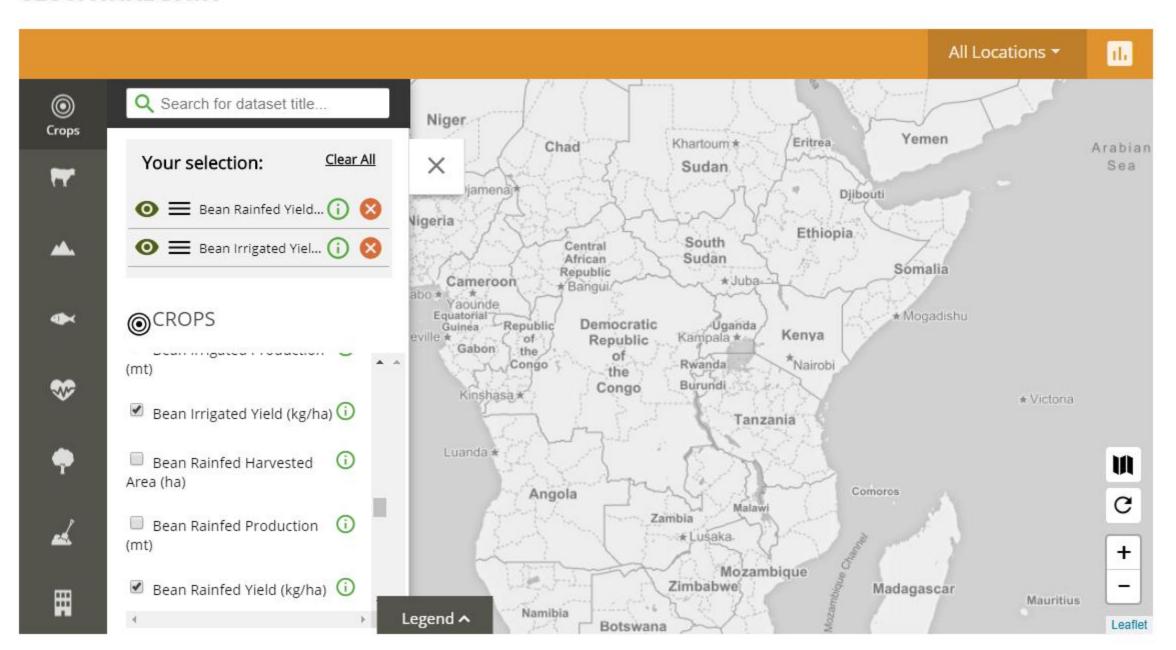
I = 3.60 / 5

R = 4.04 / 5

VIEW METRICS

DATASET FILES

01. Household data collection Instrument.pdf application/pdf



02. Individual data collection Instrument.pdf application/pdf

RELEVANT PUBLICATIONS

- What was the impact of dairy goats distributed by the Crop-Goat project in Tanzania?
- Poverty, household food security, and nutrition in rural Pakistan
- An integrated economic and social analysis to assess the impact of vegetable and fishpond technologies on poverty in rural Bangladesh
- Early childhood nutrition, schooling, and sibling inequality in a dynamic context, evidence from South Africa

GEOSPATIAL DATA

- **Q** Search
- Upload
- Мар
- **What If**
- **▲** Statistics

Select a Question or make your own using SPARQL:

Select a Question

Select a Question

- 1. Give me all maize yields for Tanzania under no fertilizer and complete fertilizer
- 2. Give me yields of improved and not-improved maize in Long and Matufa
- 3. Give me average yields of improved and not improved maize reported by households along with average C and N content in the topsoil in Long and Matufa

SPARQL Query

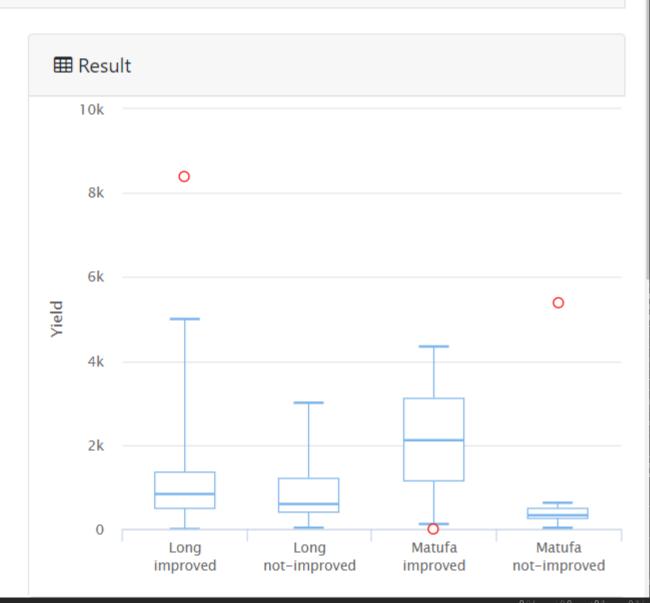
Execute

PREFIX cgiar: http://data.cgiar.org/demo#> select DISTINCT ?t ?y ? tr where { ?t cgiar:yield ?y . ?t cgiar:inZone ?z . ?t cgiar:treatment ?tr . {?t cgiar:treatment

http://data.cgiar.org/demo/resource/treatment/NPK UNION {?t cgiar:treatment

http://data.cgiar.org/demo/resource/treatment/Control} . ?z cgiar:belongsTo

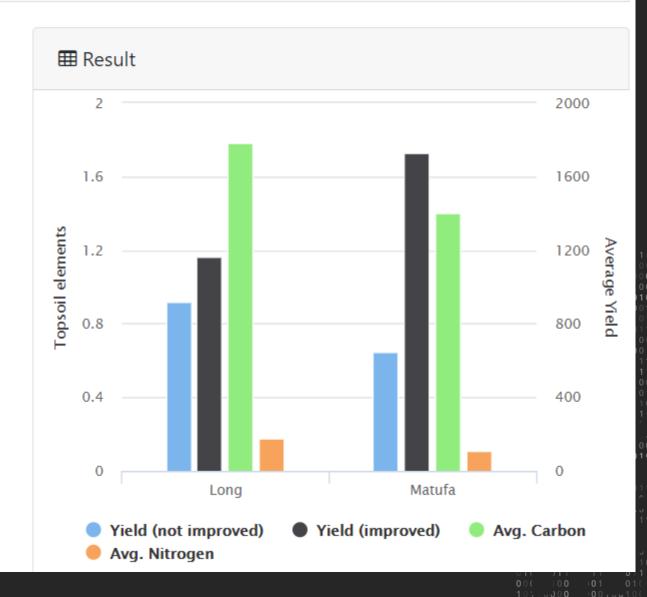
http://data.cgiar.org/demo/resource/country/Tanzania.}



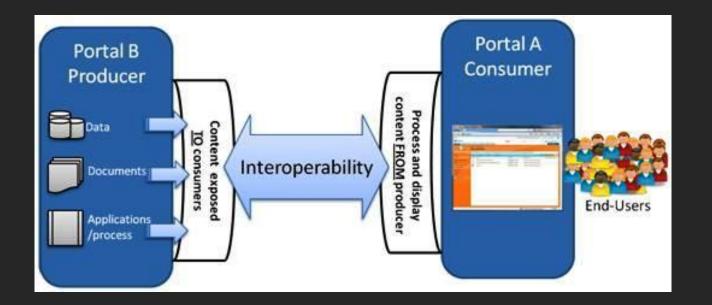
2. Give me yields of improved and not-improved maize in Long and Matufa

Execute

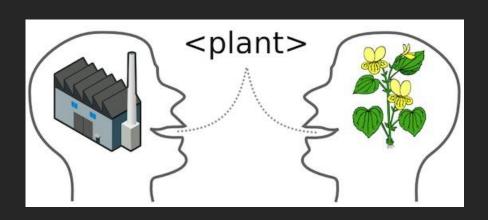
PREFIX cgiar: http://data.cgiar.org/demo# select ?r ?kind ?yield where { ?s cgiar:onVillage ?r ; cgiar:yield ?yield ; cgiar:improvedCrop ?kind . } ORDER BY ?r ?kind

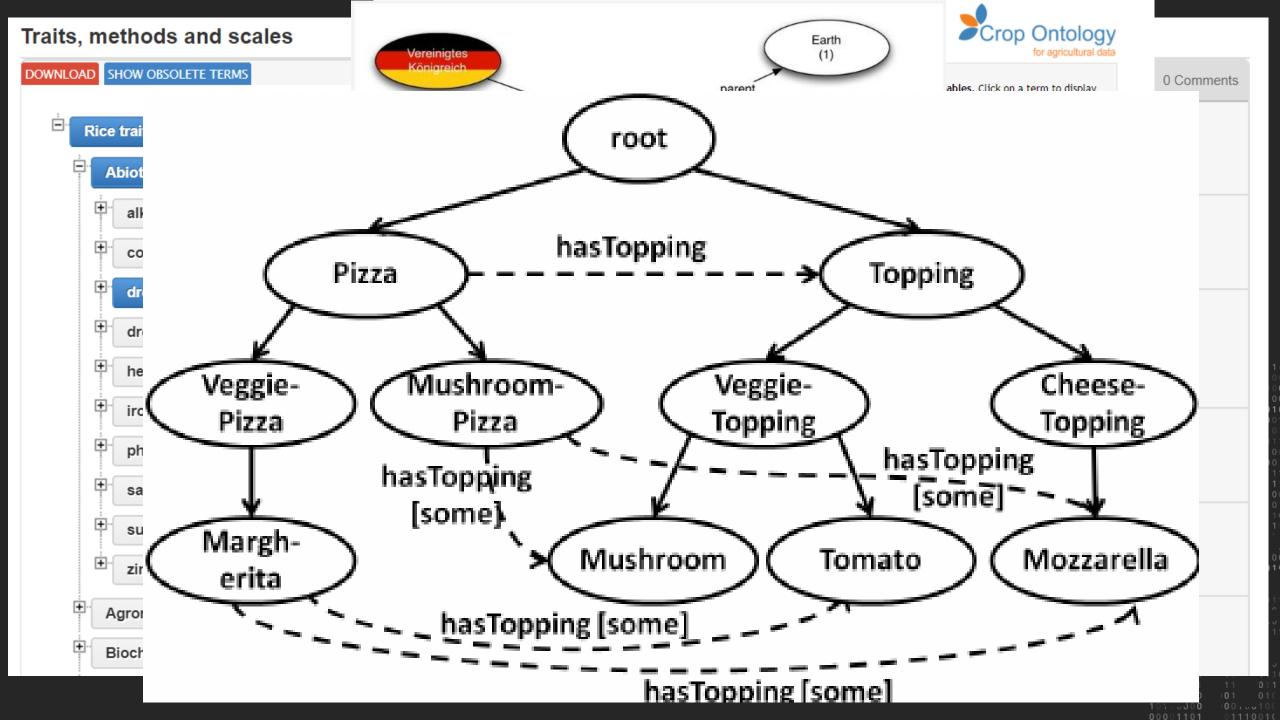


3. Give me average yields of improved and not improved maize reported by households along with average C and N content in the...


SPARQL Query

Execute


PREFIX cgiar: http://data.cgiar.org/demo#"> select ?r (AVG(? improved) as ? improved_yield) (AVG(?not_improved) as ? not_improved_yield) (AVG(?c) as ?carbon) (AVG(?n) as ?nitrogen) where { ?t cgiar:hasDepthCode "Topsoil"; cgiar:onSite ?r; cgiar:carbon ?c; cgiar:nitrogen ?n. ?s cgiar:onVillage ?r; cgiar:yield ?improved; cgiar:improvedCrop "1"^^xsd:integer.?m cgiar:onVillage ?r; cgiar:yield ?not_improved; cgiar:improvedCrop "2"^^xsd:integer.} GROUP BY ?r ORDER BY ?r


Interoperability

Syntactic interoperability: machines communicate and exchange data

Semantic interoperability: ascribe meaning to and automatically interpret data (ontologies, common vocabularies, etc)

Interoperability – Linked Open Data

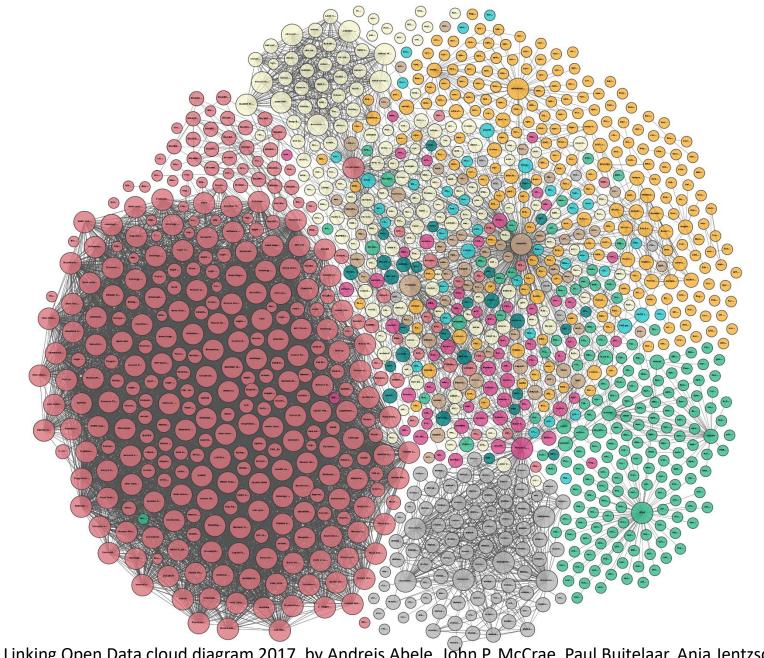
Legend

Cross Domain

Geography

Government

Life Sciences


Linguistics

Media

Publications

Social Networking

User Generated

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

Hello, Guest

O Not connected

Fieldbook

Single Trial Analysis

2 Documentation

Help

About

HIDAP AgroFIMS

Agronomy Field Management System

HIDAP AgroFIMS v0.0.17

The Agronomy Field Information Management System (AgroFIMS) has been developed on CGIAR's HiDAP (Highly-interactive Data Analysis Platform created by CGIAR's International Potato Center, CIP). AgroFIMS draws fully on ontologies, particularly the Agronomy Ontology and the Crop Ontology. It consists of modules that represent the typical cycle of operations in agronomic trial management, and enables the creation of data collection sheets using the same ontology-based set of variables, terminology, units and protocols. AgroFIMS therefore:

- · Standardizes data collection and description for easy aggregation and inter-linking across disparate datasets;
- · Allows easy integration with HiDAP breeding data, or any other ontology-based datasets;
- Functions as a data staging repository, allowing data uploads with view/edit permissions;
- Enables data quality checks, statistical analysis of the data collected, and the generation of sophisticated statistics reports;
- · Aligns a priori with CGIAR's CG Core metadata schema;
- · Enables easy upload to the institutional repositories, and much more.

Funding for AgroFIMS was provided by the Bill and Melinda Gates Foundation's Open Access, Open Data Initiative, and the CGIAR Big Data Platform.

									No.		
									missing		
	Variable	Description	Type	Unit	Average	Median	Minimum	Maximum	values		
SITE	Country name	Name of country in which experiments were conducted	Text	Text							
	SIMLESA Site name	Name of site eg district where experiments were	Text	Text							
	Farmercode	Farmner serial number	Numeric	Numeric							
		Refers to Cropping system used. CA= Conservation									
		Agriculture; CP=conventional practice in the local country									
	Treatment name/code	context	Text	Text							
		Refers to legume intercropped or rotated with maize.									
		INT=intercrop; SOLE= crop grown on its own; ROT=crops									
	Legume association	rotated	Text	Text							
		How the field was prepared for planting. Options = flat,									
	Geometry	mounts, beds, ridges	Text	Text							
		Type of tillage system used. CP= conventional									
	Tillage Practice	ploughing; R/F=conventional ridge and furrow; D/S=	Text	Text							
SITE DESCRIPTION	Season	Year of harvesting	Date	YYYY	2012.484	2012	2010	2016	1.74917354	1	
	Slope	General estimate of slope of fields used for the trial	Numeric	%	3.200745	2.5	1	5.5	1.74076277	61	
		The total amount of rainfall received in that cropping									
	Total rainfall	season in mm	Numeric	mm	774.4452	729	213	1865.3	427.195465	178	3 B B B B B B B B B B B B B B B B B B B
	Rainfall in the first 30 days afte	Rainfall in the first 30 days after planting	Numeric	mm	215.0086	236	26	483	115.550559	208	
	BD 0-20 cm	Soil bulk density in g/cm3	Numeric	g/cm3	1.388691	1.4	1.16	1.48	0.04504259	408	
		Refers to broad soil classification in terms of fineness									
		or coarseness of its texture in top 20 cm eg clay loam,								1277 61 1465 178 1559 208 1259 408 1011 298 1951 298 1632 298	
	Textural class	clay, silty loam, sand	Text	Text							
	Sand 0-20 cm	% soil content by weight constituting the sand fraction	Numeric	%	29.65865	27	17	55.5	10.3819011	298	
	Silt 0-20 cm	% soil content by weight constituting the silt fraction	Numeric	%	28.26323	19	19	59.26553	14.6012951	298	
	Clay 0-20 cm	% soil content by weight constituting the clay fraction	Numeric	%	42.07643	54	12.5	54	16.632	298	
TREATMENT DESCRIPTION	Maize cultivar	Maize variety used	Text	Text							
	Legume species	Type of legume crop used	Text	Text							
	Legume cultivar	Legume crop variety name	Text	Text							
	Surface mulch type 1	Material used as residue cover	Text	Text							
	Quantity surface mulch 1	rate of surface residue cover application	Numeric	kg/ha	0.528034	0.75	0	1	0.41476683	168	
		In cases where mixed residue cover types are used, this									
	Surface mulch type 2	indicates the second type of mulch used	Text	Text							
	Quantity surface mulch 2	Rate of surface residue cover type 2 application	Numeric	kg/ha							
	Basal fertilizer type	Name of basal fertilizer used	Text	Text							
	Basal fertilizer quantity	Rate of basal fertilizer application	Numeric	kg/ha	59.92057	100	0	125	52.3231753	78	
		Phosphorus content of DAP basal fertilizer	Numeric	kg/ha	36.5838	46	0	69	24.2365779	226	
	DAP (P&N)	Nitrogen content of Diammonium phosphate fertilizer	Numeric	kg/ha							
		Phosphorus content of applied NPK basal fertilizer	Numeric	kg/ha							
	NPK	Nitrogen content of applied NPK fertilizer	Numeric	kg/ha							
	Urea	Nitrogen content of applied Urea fertilizer	Numeric	kg/ha							

Mozamb	Cabango	159	3	Farmers check	SOLE	BASIN	CA	2013-14	984.9	382.4			
Mozamb	Cabango	157	4	Basins Maize sole	SOLE	FLAT	СР	2013-14	1024.3	346			
Mozamb	Cabango	157	4	jab planter +R/up+Maize sole	SOLE	BASIN	CA	2013-14	1024.3	346			
Mozamb	Cabango	157	4	jab planter Maize-common bean rota	ROTCP	FLAT	CA	2013-14	1024.3	346			
M	C-1	457		inh alasta Maias assault	INTER	BACIN	C4	2012 14	10040	246			
Mozamb	Cabango	157	4	jab planter Maize-common bean Inte	INTER	BASIN	CA	2013-14	1024.3	346			
Mozamb	Cabango	157	4	Farmers check	SOLE	BASIN	CA	2013-14	1024.3	346			
Mozamb	Cabango	439	5	Basins Maize sole	SOLE	FLAT	СР	2013-14	618.3	85			
Mozamb	Cabango	439	5	jab planter +R/up+Maize sole	SOLE	BASIN	CA	2013-14	618.3	85			
Mozamb	Cabango	439	5	jab planter Maize-common bean rota	ROTCP	FLAT	CA	2013-14	618.3	85			
Mozamb	Cabanga	439	_	jab planter Maize-c <u>ommon bean</u> Inte	INTCD	BASIN	CA	2013-14	618.3	95			
IVIOZAMD	Cabango	459	3	Jab planter Malze-Common bean Inte	INTEP	DASIN	CA	2015-14	018.5	85			
Mozamb	Cabango	439	5	armers check	SOLE	BASIN	CA	2013-14	618.3	85			
Mozamb	Cabango	257	6	Basins Maize sole	SOLE	FLAT	CP	2013-14	930.7	67			
Mozamb	Cabango	257	6	jab planter +R/up+Maize sole	SOLE	BASIN	CA	2013-14	930.7	67			
Mozamb	Cabango	257	6	jab planter Maize-common bean rota	ROTCP	FLAT	CA	2013-14	930.7	67			
Mozamb	Cabango	257	-	jab planter Maize-common bean Inte	INTCD	BASIN	CA	2013-14	930.7	67			
IVIOZATIID	Cabango	251	0	Testemunha do campones	INTER	DASIN	CA	2015-14	930.7	67			
Mozamb	Cabango	257	6		SOLE	BASIN	CA	2013-14	930.7	67			
Mozamb	Sussundenga	165	1	Covacho Milho puro	SOLE	FLAT	СP	2013-14	1196	471.4			
Mozamb	Sussundenga	165	1	Matrace +R/up+Milho puro	SOLE	BASIN	CA	2013-14	1196	471.4			
Mozamb	Sussundenga	165	1	Matraca Feijao vulgar-Milho rotacao	ROTCP	FLAT	CA	2013-14	1196	100.8			
Mozamb	Sussundenga	165	1	Matraca Milho-Feijao vulgar consoc	INTCD	BASIN	CA	2013-14	1196	471.4			
WIOZamb	Sussunuenga	103	1	Testemunha do campones	INTER	DMOIN	CA	2013-14	1190	4/1.4			
Mozamb	Sussundenga	165	1		SOLE	BASIN	CA	2013-14	1196	471.4			
Mozamb	Sussundenga	342	2	Covacho Milho puro	SOLE	FLAT	СР	2013-14	1493.6	471			
				·									$\neg \neg \vdash$
Mozamb	Sussundenga	342	2	Matraca +R/up+Milho puro	SOLE	BASIN	CA	2013-14	1493.6	471			

Interoperability – querying one or more datasets Dataset Experimental site (weather) located in Research entity has activity (Bako) administered by (CIMMYT) Admin div 2 has activity **ET Met** administered by (Bako) Project (SIMLESA) is part of has process has process has process Admin div 1 Nutrient mgmt (Oromia) Planting Land preparation has participant has participant/ is part of has participant Crop (maize) Crop (bean) Zero tillage Conv. tillage Country (Ethiopia) occurs in Etc. plot 1 plot 3 plot 2 plot 4

Let's explore SIMLESA data!

What does this mean for you?

What lies 'beyond metadata' or business as usual to leverage data science and analytics capabilities and needs fully?

e.g. sample DoIs; interfacing physical with digital? Hi-throuput support?

Can we build tools to ease metadata entry to repositories/dbs? To semantically enrich datasets?

How might libraries, librarians/info-data specialists evolve roles?

Thank you!

bigdata.cgiar.org